# Demonstration of Koch's postulates by using plant bacteria

Bacteria are prokaryotic unicellular organisms. About 200 species of bacteria cause diseases in plants.

# i). Morphology

Most plant pathogenic bacteria are rod shaped except Streptomyces, which is filamentous. The cell walls of bacteria of most species are enveloped by a viscous, gummy material, which if thin and diffused, is called a slime layer; but if thick, forming a definitive mass around the cell, is called a capsule. Most plant pathogenic bacteria have delicate, threadlike flagella, considerably longer than the cells on which they are produced.

#### ii). Gram staining reaction

Gram staining reaction differentiates bacteria into gram positive and gram negative types. In this reaction, bacteria fixed on a glass slide are treated with a crystal violet solution for 30 seconds, rinsed gently, treated with iodine solution and rinsed again with water and then alcohol.

Gram positive bacteria retain the violet-iodine stain combination because it forms a complex with certain components of their cell walls and cytoplasm. The rod shaped phytopathogenic bacteria, only the genera *Clavibacter* and *Curtobacterium*, and also *Bacillus* and *Rhodococcus* are gram positive.

Gram negative bacteria have no affinity for the stain combination which is therefore, removed by the alcohol rinse and bacteria remain as nearly invisible as before. *Agrobacterium, Erwinia, Pseudomonas, Xanthomonas* and *Xylella* are gram negative.

1

# Name of the disease: Bacterial blight of Rice and the casual organism is Xanthomonas oryzae pv. oryzae

#### **Bacterial blight of Rice:**

- On seedlings, infected leaves turn grayish green and roll up. As the disease progresses, the leaves turn yellow to straw-colored and wilt, leading whole seedlings to dry up and die (also called kresek).
- On young lesions, bacterial ooze resembling a milky dew drop can be observed early in the morning. The bacterial ooze later on dries up and becomes small yellowish beads underneath the leaf.
- On older plants, lesions usually develop as water-soaked to yellow-orange stripes on leaf blades or leaf tips or on mechanically injured parts of leaves. Lesions have a wavy margin and progress toward the leaf base.

To quickly diagnose bacterial blight on leaf:

- cut a young lesion across and place in a transparent glass container with clear water
- after a few minutes, hold the container against light and observe for thick or turbid liquid coming from the cut end of the leaf

# Xanthomonas oryzae pv. oryzae:

*X. oryzae* is a rod-shaped, round-ended, Gram-negative species. Individual cells vary in length from approximately 0.7  $\mu$ m to 2.0  $\mu$ m and in width from 0.4  $\mu$ m to 0.7  $\mu$ m. Cells are motile by means of a single polar flagellum. Colonies on solid media containing glucose are round, convex, mucoid and yellow in colour due to the production of the pigment xanthomonadin. *X. oryzae* is obligately aerobic and does not form spores. Optimal temperature for growth is between 25 and 30 °C.

#### Materials needed:

- Sterile Water
- Dissecting and compound microscopes
- Dissecting needles and alcohol or sterile (autoclaved) toothpicks
- Bunsen burners or candles
- Paper towels

- Petri dishes
- Plastic containers with healthy rice plant
- Scalpel or shears
- Nutrient agar plates or other bacterial media
- Inoculating Loop etc.

Postulate 1: A specific organism must always be observed in association with the disease.

# Procedure:

- 1. Collected disease specimen from the field
- 2. Study the characteristics symptoms of the disease specimen
- Cut a young lesion across and place in a transparent glass container with clear water. After a few minutes, hold the container against light and observe for thick or turbid liquid coming from the cut end of the leaf
- 4. Prepare a culture plate then, Identify the bacterial colony by using standard catalog

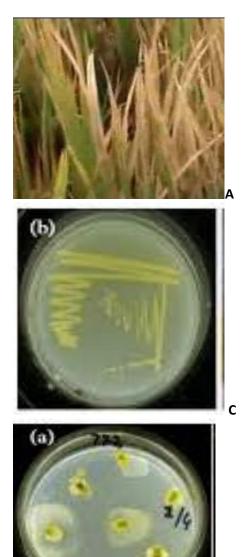
Postulate 2: The organism must be isolated from an infected host and grown in pure culture in the laboratory.

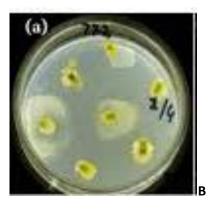
#### <u>Procedure</u>

- 1. Isolate the microorganism by using standard method
- 2. Incubate plates at 30°C for 48 hours and observe plates for growth
- 3. Choose individual colonies- lightly touch the top of an individual colony with a sterile loop or needle and streak on a fresh agar plate for getting pure culture
- 4. Identify the bacterial colony by using standard catalog

Postulate 3: When the organism from the pure culture is inoculated into a susceptible host organism, it must cause the disease.

#### **Procedure**


- 1. Select healthy, similar age and species of the plant for inoculation.
- 2. Inoculate by using standard method with isolated pure culture microorganism
- After inoculation then keep the plant for incubation at least 10 days and allow to grow plant disease at 30°C under 12-h days


Postulate 4: The infectious organism must be re-isolated from the diseased organism and grown in pure culture.

#### **Procedure**

- 1. Observe the infected area of the plant
- 2. Aseptically transfer of the microorganism from inoculated plant by using standard method in culture medium and make a data chart for recording the observations
- 3. Identify the bacterial colony by using standard catalog and compare with previous one.

**Remark:** This pathogen is absolutely identical with previous one. As a result, it concluded that the disease was Bacterial blight of rice and the casual organism was *Xanthomonas oryzae* pv. *oryzae*.









# Figure A: ASSOCIATION

Rice plant + Xanthomonas oryzae pv. oryzae

Ε

#### Figure B-C: ISOLATION

Culture the *Xanthomonas oryzae* pv. *oryzae* on media Pure culture of *Xanthomonas oryzae* pv. *oryzae* 

#### Figure D: INOCULATION

Inoculate with isolated Xanthomonas oryzae pv. oryzae

# Figure E-F: **RE-ISOLATION**

Pure culture of *Xanthomonas oryzae* pv. *oryzae* Identify the bacterial colony by using standard catalog