A Seminar Paper on

# **Application of MXene in Cell and Bioengineering**

Course Title: Seminar

Course Code: BGE 598

# SUBMITTED TO

# **Course Instructors**

Dr. A. K. M. Aminul Islam

Professor,

Department of Genetics and Plant Breeding, BSMRAU

### Dr. Satya Ranjan Saha

Professor,

Department of Agroforestry and Environment, BSMRAU

### Dr. Shaikh Shamim Hasan

Professor,

Dept. of Agricultural Extension and Rural Development, BSMRAU

# Dr. Dinesh Chandra Shaha

Associate Professor,

Department of Fisheries Management, BSMRAU

# SUBMITTED BY

# Arin Agnila Rahman

Reg. No.: 17-05-4252

MS Student

Institute of Biotechnology and Genetic Engineering



Bangabandhu Sheikh Mujibur Rahman Agricultural University

Salna, Gazipur 1706

# **Major Professor**

Dr. Md Tofazzal Islam

Professor

Institute of Biotechnology and Genetic Engineering

BSMRAU

# Application of MXene in Cell and Bioengineering<sup>1</sup>

By

Arin Agnila Rahman<sup>2</sup>

### ABSTRACT

MXene is a multifaceted two dimensional (2D) material which is recently emerged in the world of two dimensional compounds. It is made up of surface-modified carbide which provides it flexibility and variable composition. The general formula of MXene is  $M_{n+1}X_nT_x$ , where M indicates early transition metals, X indicates layers of carbon or nitrogen (may contain n numbers of layers) and terminated with surface functional groups (denoted as  $T_x/T_z$ ). High electrical conductivity, exceptional mechanical stability, and great optical characteristics are just a few of the unique qualities that MXenes have to offer. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). In the recent past only some of the biological properties of MXene have been explored and the types of MXene applied in the perspective of biomedical engineering and agriculture are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper focuses on the structural properties of MXene, synthesis procedures followed and whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. Both good and bad aspects of these synthesis procedure are discussed. MXenes can be further changed for applications in biosensing, cancer theranostics, drug delivery, and bio-imaging to increase their biodegradability and decrease their cytotoxicity. Discussions also included MXene's antibacterial properties and use in agricultural aspects. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in bioengineering were included. Overall, this review puts into perspective the current advancements and prospects of MXenes in cell and bioengineering.

Keywords: Antimicrobial activity, Bioengineering, Biosensors, Cancer therapy, MXene

<sup>1</sup>Title of the seminar paper presented as a part of course, BGE 598 during Winter'2022 <sup>2</sup>MS student, Institute of Biotechnology and Genetic Engineering, BSMRAU, Gazipur-1706

# **TABLE OF CONTENTS**

| CHAPTER<br>NO. | TITLE                     | PAGE NO. |
|----------------|---------------------------|----------|
|                | ABSTRACT                  | i        |
|                | TABLE OF CONTENTS         | ii       |
|                | LIST OF TABLES            | iii      |
|                | LIST OF FIGURES           | iv       |
| Ι              | INTRODUCTION              | 1-2      |
| II             | MATERIALS AND<br>METHODS  | 3        |
| III            | <b>REVIEW OF FINDINGS</b> | 4-28     |
| IV             | CONCLUSION                | 29       |
|                | REFERENCE                 | 30-31    |

# LIST OF TABLES

| TABLE<br>NO. | TITLE                                                                                           | PAGE<br>NO. |
|--------------|-------------------------------------------------------------------------------------------------|-------------|
| 1            | Types of MXenes, their syntheses methods, surface functionalization and biomedical applications | 9-10        |
| 2            | List of MXene integrated biosensors with analyte, sensing range, LOD and main achievements      | 12-13       |
| 3            | List of examples of MXene integrated nanocomposites for cancer therapy                          | 15-16       |
| 4            | List of MXene-integrated nanocomposites for regenerative medicine                               | 17-18       |
| 5            | List of recently used aptasensor for detection of aflatoxins                                    | 25          |
| 6            | List of sensing performance of various biosensors for detection of CO2                          | 26          |

| LIST | OF | FI | GU | <b>RES</b> |
|------|----|----|----|------------|
|------|----|----|----|------------|

| FIGURE<br>NO. | TITLE                                                                                                                                                                                                                                                                                                                                                                            | PAGE<br>NO. |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.            | General element composition of MAX phase and MXene: M:<br>early transition metal, A: Group A element, X: C and/or N,<br>Tx: surface functional group                                                                                                                                                                                                                             | 5           |
| 2.            | A schematic chemical representation of top-down approach:<br>etching and intercalation procedure of MAX phase ( $Ti_3AlC_2$ )<br>to form $Ti_3C_2$ MXene                                                                                                                                                                                                                         | 7           |
| 3.            | Schematic illustration of bottom-up methods (Chemical vapour deposition of Mo and C to form Mo <sub>2</sub> C thin film in gas chamber)                                                                                                                                                                                                                                          | 8           |
| 4.            | Application of MXene in Biomedical engineering                                                                                                                                                                                                                                                                                                                                   | 9           |
| 5.            | Application of MXenes as biosensor for the detection of NH <sub>3</sub>                                                                                                                                                                                                                                                                                                          | 11          |
| 6.            | <ul> <li>(A) Preparation of Ti<sub>3</sub>C<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-TPP nanocomposites; (B)</li> <li>Using nanocomposites for mitochondrial-targeted PDT and</li> <li>PTT; (C) Digital images of MCF-7 tumor-bearing mice after</li> <li>different treatments during two weeks</li> </ul>                                                                       | 15          |
| 7.            | Wound healing process on days 0, 3, 7, and 14 in the different treated groups                                                                                                                                                                                                                                                                                                    | t 19        |
| 8.            | <ul> <li>(A) Increase in ROS level and death in <i>Staphylococcus aureus</i>; (B) Relative lipid peroxidation level of <i>S. aureus</i>; (C) DNA damage index; (D) <i>S. aureus</i> and (E) <i>Escherichia coli</i> biofilm formation condition on the four structures</li> </ul>                                                                                                | 21          |
| 9.            | <ul> <li>(A) MXenes for antibacterial activity; (B) <i>E. coli</i> bacterial cells were recultivated after treatment for 4 h with 0 mgml<sup>-1</sup></li> <li>(i), 10 mgml<sup>-1</sup> (ii), 20 mgml<sup>-1</sup> (iii), 50 mgml<sup>-1</sup> (iv), 100 mgml<sup>-1</sup></li> <li>(v), and 200 mgml<sup>-1</sup> (vi) of Ti<sub>3</sub>C<sub>2</sub>, respectively</li> </ul> | 22          |
| 10.           | Synthesis of AV@Ti <sub>3</sub> C <sub>2</sub> for development of new pesticide delivery system                                                                                                                                                                                                                                                                                  | 23          |

#### **CHAPTER I**

### INTRODUCTION

Two-dimensional (2D) materials are currently of keen interest to material researchers due to their excellent electronic, mechanical, and optical properties. On the other hand, early twentieth century classical physicists anticipated that thermal lattice fluctuations caused the thermodynamic stability of 2D materials. Yet, the finding of a 2D graphene monolayer in 2004 was a significant advance in the field of material science. (Zamhuri *et al.*, 2021). In contrast to their 3D counterparts, 2D nanomaterials consist of layers of atomic to nanoscale thicknesses and have unique features of their own.

Recently, novel materials with significantly improved physical and chemical characteristics suited for a variety of research fields have been introduced. Because of its unique properties and adjustable chemical structures, "MXene" has gained significant attention in the field of 2D nanomaterials research. The first ever MXene was discovered by a group of researchers from Drexel University, Philadelphia, where they exfoliated 3D titanium aluminium carbide (Ti<sub>3</sub>AlC<sub>2</sub>) or known as MAX phase using hydrofluoric acid (HF), and produced 2D titanium-carbide (Ti<sub>3</sub>C<sub>2</sub>) layers. They share a general formula of  $M_{n+1}X_n$  (n = 1–3), where M is an early transition metal (e.g. Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo), and X is a carbon or nitrogen. Since its initial discovery (Ti<sub>3</sub>C<sub>2</sub>) in 2011, MXenes have attracted a great deal of research interest in various fields, such as physics, energy evolution, environmental science, and nanomedicine (Huang *et al.*, 2018). In most cases, these materials have a layered structure with (n + 1) layers of M (the early transition metal) interconnected by n layers of X (carbon and nitrogen). Given the comparatively few atomic layers, a single MXene stack typically has a thickness of less than 1 nm. Whereas the lateral dimensions of MXenes vary from nanometers to micrometers depending on how the materials were prepared.

Furthermore, transition metals exhibit metallic conductivity, which gives these compounds the ability to exhibit electronic, optical, and magnetic properties. One of the most recent discoveries about MXene is the application of these compounds in the bioengineering. Bioengineering is a discipline that applies engineering principles of design and analysis to biological systems and biomedical technologies. The nanoscale size of MXene not only makes it possible for them to have a longer circulation time in biological systems, it also endows them with novel properties, such as

closer interactions with surrounding molecules and size effect-induced luminescence. As a novel type of nanomaterial, nano-sized MXenes may provide new solutions for ultrasensitive diagnosis and the efficient treatment of diseases (Huang et al., 2018). This review paper discusses the process of MXene synthesis and their application in bioengineering field. Usually top down or bottom up processes are followed in synthesis of MXene. Among the two, first one is more common. But there are some of the limitations that needs to be overcome. For example, use of HF in etching may be toxic for cell and both human safety and the environment. HF can cause systemic toxicity that can lead to fatality. For biological applications, the MXene nanosheets must be extremely small. Conventional top-down multi-layered MXene production results in huge sheet sizes, which could cause biosafety problems and poor therapeutic results. (Zamhuri et al., 2021). Again the CVD (Chemical vapour depositon) method in case of bottom up is also not suitable for cell and biomedical components. If these challenges can be overcome then MXene can be of great use in the field of bioengineering. For example, these nanoparticles can be used as biosensors, for bioimaging, tissue regeneration through bioengineering. Cancer therapy can get a wide spectrum of development through the use of MXene. Again the antibacterial activity of MXene against both Gram positive and Gram negative bacteria can be used to engineer new antibiotics. Application of these nanocomposites in agriculture is also possible. Till now, biosensors are developed using MXene those can sense CO<sub>2</sub>, NH<sub>3</sub>, various toxins like alfatxin, etc. Pesticide delivery system can also be prepared using them. Again detection of genetically modified crops and heavy metals for waste water treatment is also possible. The aim of this review is to highlight the key MXene synthesis technologies with top notch biomedical and agricultural applications. The current challenges and future outlooks of biocompatible MXenes are also discussed. This review will be useful as a guidance for upcoming new research of MXenes for more advanced and diverse applications. Considering the facts, present study was undertaken with the following objectives

1. To analyze the structural organization, properties and synthesis mechanism of MXene

- 2. To assess the potential of MXenes for use in cell and biomedical engineering
- 3. To evaluate the potential applications of MXenes in agricultural bioengineering

### **CHAPTER II**

# MATERIALS AND METHODS

This paper is mainly a review paper. Hence, with the goal of writing this paper, all the information was gathered from secondary sources. The choice of the title was made with the help of my major professor. The secondary sources used included journals, reports, internet searches. Most of the information are collected by internet browsing. The valuable suggestions and guidance from my major professor and the respected course instructors have helped me a lot in preparing the paper. After collecting the necessary information, I have compiled and arranged them chronologically for better understanding and clarification.

### **CHAPTER III**

### **REVIEW OF FINDINGS**

### **3.1 Concept of MXene**

MXene has unique properties and adjustable chemical structures, "which has gained significant attention in the field of 2D nanomaterial research. Researchers from Drexel University in Philadelphia made the first ever discovery of MXene when they used hydrofluoric acid (HF) to exfoliate 3D titanium aluminium carbide (Ti<sub>3</sub>AlC<sub>2</sub>), also known as the MAX phase, to create 2D titanium-carbide (Ti<sub>3</sub>C<sub>2</sub>) layers (Naguib et al., 2011). Because of being similar to graphene, MXenes are typically created by exfoliating their 3D precursors. The ternary carbides or nitrides that make up the MAX phases are the 3D precursors for MXenes. According to the general formula of MXene, M<sub>n+1</sub>AX<sub>n</sub>, M indicates an early transition metal, A is an A-group element (mostly main group IIIA or IVA), X is either carbon or nitrogen, and n = 1, 2 or 3 (Figure 1) (Zamhuri *et al.*, 2021). The A layers can be selectively removed by a strong acid (such as hydrofluoric acid, HF) etching to generate  $M_{n+1}Xn$  layers that can be further separated by sonication. Strong acids are used because M-X bonds are much stronger than M-A bonds and the A layers are chemically more active than M-X layers (Cai et al., 2020). Due to their high surface energy, MXenes generally have their surfaces terminated with fluorine (-F), hydroxide (-OH), and oxygen (-O) groups by this etching procedure (Zamhuri *et al.*, 2021). As a result, MXene's complete chemical formula is  $M_{n+}$  $_1X_nT_x$ , where Tx stands for the surface functional groups (Cai *et al.*, 2020). The Ti<sub>3</sub>C<sub>2</sub> and Ti<sub>2</sub>C families of MXenes have so far seen the most use in biomedicine and biotechnology. This creates the possibility of new elemental combinations from the M and A groups, aside from Ti and C (Zamhuri et al., 2021).



**Figure 1.** General element composition of MAX phase and MXene: M: early transition metal, A: Group A element, X: C and/or N, Tx: surface functional group (Zamhuri *et al.*, 2021).

# 3.2 Properties of MXene

MXene has a number of special properties that help it to become one of the important biotechnological application tools. For example

**3.2.1 Optical and electroactive properties:** The dielectric response of MXenes is greatly influenced by their metallic nature and interband transitions. (Berdiyorov & Madjet, 2016) demonstrated that surface functionalization (or functional groups) significantly affects the optical properties of MXenes (Guo *et al.*, 2017). The use of MXenes in transparent conductive electrodes, photocatalysis, and light-controlled anticancer therapies is made possible by their optical characteristics (Ran *et al.*, 2017). The electroactive properties of the MXenes are still being investigated for their potential. These materials' primary distinguishing trait is their metallic-like behavior, which is made up of significant electron concentrations near to the Fermi level (The highest energy level that an electron can occupy at the absolute zero temperature) (Liang *et al.*, 2017).

**3.2.2. Electronic properties:** Comparing MXenes to other 2D materials, their electronic characteristics are the most unique. According to (Huang *et al.*, 2018) the nature of M and X as well as their surface terminations have an impact on the electrical characteristics of MXenes. Theoretical investigations suggested that MXenes may exhibit metallic to semiconductor-like properties for specific compositions, and insulation may also be feasible for some heavy transition

metal (such as Cr, Mo) containing MXenes. The electrical characteristics of a few varieties of MXenes, such as Ti<sub>2</sub>C, Ti<sub>3</sub>C<sub>2</sub>, Mo<sub>2</sub>C, Mo<sub>2</sub>TiC<sub>2</sub>, and Mo<sub>2</sub>T<sub>2</sub>C<sub>3</sub> with heterogeneous surface terminations, have been experimentally confirmed. For several forms of activations, such as biocatalysis and the formation of reactive oxygen species, MXenes' semiconducting characteristic is crucial (ROS). Under specific stimuli, such as light stimulation, active electrons and vacancies may be developed in the semiconductor-like MXenes. These electrons respond to the environment and put themselves under oxidative stress, which is a crucial step in catalysis and the production of ROS (Huang *et al.*, 2018). Still the knowledge on electronic properties of MXene is not sufficient and further research is needed.

**3.2.3. Magnetic Properties:** Physical characteristics like magnetic force are frequently used in a variety of biomedical applications. Experimental studies have rarely confirmed the magnetic properties of MXenes because it is challenging to prepare termination-free MXenes.Recently, two types of MXenes ( $Cr_2C$  and  $Cr_2N$ ) were predicted to have a magnetic moment even with surface terminations, whose magnetic mechanism is however unclear(Singh *et al.*, 2005). The present biomedical uses of MXenes that use magnetic stimuli, however, are based on hybrid materials made of MXenes and magnetic nanoparticles because magnetic MXenes have not yet been created (e.g.  $MnO_2$  and iron oxide)(Huang *et al.*, 2018).

### **3.3. Preparation of MXene**

In general, top-down or bottom-up methods can be used to synthesize MXenes. Determining their general physical and chemical features, such as size, shape, and functioning of the material, requires careful consideration of the best method (Shao *et al.*, 2020). More than twenty of the approximately seventy distinct MXene compositions that have been theoretically predicted have been empirically attained (Huang *et al.*, 2018). The following provides a summary of the synthesis and surface modification of MXenes.

**3.3.1.Top-down method:** Top-down fabrication techniques typically draw from the cleavage of relatively large bulk precursors, which can be categorized by the categories of antecedents, the compositions of etchants, or the composition of delamination intercalants (Alhabeb *et al.*, 2017). The precursors indicates MAX phase and non MAX phase precursors for manufacturing of MXene. The MAX phase precursors include Al-attaching or some other metal attaching like Ga and Si in  $M_{n+1}AlX_n$ ,  $M_{n+1}GaX_n$ , and  $M_{n+1}SiX_n$  precursors respectively. For instance, the MXene

stacks (Ti<sub>3</sub>C<sub>2</sub> or Ti<sub>2</sub>C) were connected to one another through relatively weak ionic bonds via Al (or other ions like Si, Ga in other MAX-phase precursors). In a typical method, the precursors were firstly treated with etching reagents (HF or acid-fluorides) and were subsequently treated with shearing forces or sonication to generate a single-layer stack (Huang *et al.*, 2018). For the selective etching of MXene precursors, HF is an effective and commonly used reagent. Lately, a number of substitution strategies are put out in an effort to avoid the toxic and harsh HF reagent. One strategy is that of taking use of the *in situ* production of HF by the reaction of acids with fluorides (typically HCl and LiF/NaF) to get selective etching of attaching ions (Al or Ga) (Ghidiu *et al.*, 2016). There are two different kinds of delamination intercalants: intercalant-organic intercalant and metal ion intercalant. (Ghidiu *et al.*, 2016). One of the problems of using HF as etchant is it is harmful for cell and causes cell death. So use of less harmful HCl/LiF etchant and fluorine-free etching process are more suitable for biomedical applications.



**Figure 2.** A schematic chemical representation of top-down approach: etching and intercalation procedure of MAX phase ( $Ti_3AlC_2$ ) to form  $Ti_3C_2$  MXene (Naguib *et al.*, 2011).

**3.3.2. Bottom-up method:** The bottom-up synthesis method using atomic scale control is another less well-known MXene synthesis method. Tiny organic or inorganic molecules or atoms are typically the starting point for bottom-up synthesis, which is then followed by crystal formation that can be arranged to produce a 2D-ordered layer. The chemical vapour deposition (CVD) process, which can create high-quality thin films on a variety of substrates, is the most used technology for this strategy (C. Xu *et al.*, 2015). Using methane gas (CH<sub>4</sub>) as the carbon source and a Cu/Mo (copper/molybdenum) foil as the substrate, the first MXene synthesis by CVD

technique produced high-quality ultrathin  $Mo_2C$  (molybdenum carbide) at temperatures above 1085 °C. A variety of films with lateral sizes between 10 and 100 m were made by optimizing the growth temperature and growth duration. Though the MXene produced in this process is defect free but not suitable for biomedical application for the size being too big for permeation of the cell.



**Figure 3.** Schematic illustration of bottom-up methods (Chemical vapour deposition of Mo and C to form Mo<sub>2</sub>C thin film in gas chamber) (C. Xu *et al.*, 2015).

In addition to CVD, other techniques for MXene synthesis include included the template approach and plasma-enhanced pulsed laser deposition (PELPD) (Xiao *et al.*, 2017). Though very little is known and so further experimentation is needed.

### 3.4. MXene in cell and bioengineering

Bioengineering is a discipline that applies engineering principles of design and analysis to biological systems and biomedical technologies. Whereas, cell is the structural and functional unit of body. So, bioengineering or biomedical engineering is the use of artificial tissues, organs, or organ components to replace damaged or absent body parts. With the advent of 2D materials, advances in illness therapy and biomedicine bloomed once more. These nanoparticles like MXene, were superior to a single element of graphene in terms of their performance, flexibility, and compatibility (Maleki *et al.*, 2022). The surfaces of MXenes can be tailored with a variety of materials useful for biosensors, cancer theranostics (therapeutics and diagnostics), medication transport, and antibacterial activities in biomedical research studies (Zamhuri *et al.*, 2021). A pictorial view of MXene in biomedical engineering is given below



Figure 4. Application of MXene in Biomedical engineering (Huang et al., 2018).

Some examples of different MXene composite and its application in biomedical engineering is given in the table below.

**Table 1.** Types of MXenes, their syntheses methods, surface functionalization and biomedical applications

| Type of                                          | Synthesis    | Functionalization(s) | Application                                                     |
|--------------------------------------------------|--------------|----------------------|-----------------------------------------------------------------|
| MXene/MXene                                      | method       |                      |                                                                 |
| composite                                        | of MXene     |                      |                                                                 |
| TiO <sub>2</sub> -Ti <sub>3</sub> C <sub>2</sub> | Hydrothermal | Hemoglobin (Hb),     | Detection of hydrogen                                           |
|                                                  | synthesis    | Nafion               | peroxide and nitrite via                                        |
|                                                  |              |                      | amperometry changes(detection of ions in a                      |
|                                                  |              |                      | solution based on electric current or changes                   |
|                                                  |              |                      | in electric current)                                            |
| Ti <sub>3</sub> C <sub>2</sub>                   | HF etching   | Glucose oxidase      | Detection of H <sub>2</sub> O <sub>2</sub> through oxidation of |
|                                                  |              | (GOx)                | glucose                                                         |

| Type of                              | Synthesis     | Functionalization(s) | Application                                                     |
|--------------------------------------|---------------|----------------------|-----------------------------------------------------------------|
| MXene/MXene                          | method        |                      |                                                                 |
| composite                            | of MXene      |                      |                                                                 |
| Ti <sub>3</sub> C <sub>2</sub>       | LiF + HCl     | Poly-L-lysine (PLL), | Detection of H <sub>2</sub> O <sub>2</sub> through oxidation of |
|                                      | etching       | GOx                  | glucose                                                         |
| Ti <sub>3</sub> C <sub>2</sub>       | HF etching    | Tyrosinase, chitosan | Detection of phenol in real water samples                       |
| Ti <sub>3</sub> C <sub>2</sub>       | HF etching,   | AuNPs,               | Detection of CEA via surface plasmon                            |
|                                      | ТМАОН         | staphylococcal       | resonance (SPR)                                                 |
|                                      | intercalation | protein A, anti-CEA  |                                                                 |
| Ta <sub>4</sub> C <sub>3</sub>       | HF etching    | Manganese oxide      | Cancer theranostics, Multi-imaging guided                       |
|                                      |               | (MnOx), soybean      | (MRI, CTscan and PAI) PTT                                       |
|                                      |               | phospholipid (SP)    |                                                                 |
| Nb <sub>2</sub> C                    | HF etching,   | Polyvinylpyrrolidone | PAI-guided PTT                                                  |
|                                      | ТРАОН         | (PVP)                |                                                                 |
|                                      | intercalation |                      |                                                                 |
| Nb <sub>2</sub> C                    | HF etching,   | Cetanecyl trimethyl  | PAI-guided PTT                                                  |
|                                      | ТРАОН         | ammonium chloride    |                                                                 |
|                                      | intercalation | (CTAC), polyethylene |                                                                 |
|                                      |               | glycol (PEG)         |                                                                 |
| Ti <sub>3</sub> C <sub>2</sub> (QDs) | Hydrothermal  | -                    | Multicolour cellular imaging                                    |
|                                      | synthesis     |                      |                                                                 |
| Ti <sub>2</sub> N (QDs)              | KF + HCl      | -                    | PAI-guided PTT                                                  |
|                                      | etching,      |                      |                                                                 |
|                                      | sonication in |                      |                                                                 |
|                                      | NMP           |                      |                                                                 |
| Ti <sub>3</sub> C <sub>2</sub>       | HF etching,   | SP, doxorubicin      | Drug delivery, Chemotherapeutic                                 |
|                                      | ТРАОН         | (Dox)                | agent, synergistic chemotherapy and                             |
|                                      | intercalation |                      | PTT                                                             |
| Ti <sub>3</sub> C <sub>2</sub>       | LiF + HCl     | -                    | Antimicrobial activity                                          |
|                                      | etching       |                      |                                                                 |

(Source: (Zamhuri et al., 2021)

#### **3.4.1** Biosensor and wearable electronics

MXenes are widely recognized for their high surface area to volume ratio, outstanding ion transport behavior, high electrical conductivity ( $Ti_3C_2Tx$  monolayer: 4600 1100 S/cm), strong biocompatibility, and ease of functionalization. As a result, these characteristics make MXenes an extremely sophisticated biosensing tool that can identify a variety of tiny chemicals, large macromolecules, and even cancer cells (Huang *et al.*, 2018). Any alteration in the surface termination significantly changes the properties of MXene. Usually when a specific gas gets attached with MXene, the change in conductivity occurs. This helps to identify the specific gas. According to (Huang *et al.*, 2018) a Ti<sub>2</sub>C monolayer with oxygen terminations was extremely selective to NH<sub>3</sub> versus other gas molecules like H<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, N<sub>2</sub>, NO<sub>2</sub>, and O<sub>2</sub> based on the density functional theory (DFT) calculation. Using first-principles simulation, the interaction between NH<sub>3</sub> and semiconductor-like MXenes M<sub>2</sub>C with oxygen terminals and various charge states was studied. Here the M of M<sub>2</sub>C indicates Sc, Ti, Zr,etc. In accordance with their findings, NH<sub>3</sub> molecules could be strongly adsorbed on oxygen-terminated M<sub>2</sub>C with apparent charge transfer, and the release of NH<sub>3</sub> could be achieved simply by adjusting the electrons injected into M<sub>2</sub>C (Figure 5).



Figure 5. Application of MXenes as biosensor for the detection of NH<sub>3</sub> (Huang *et al.*, 2018).

In addition to NH<sub>3</sub>, the MXene-based H<sub>2</sub>O<sub>2</sub> sensor has also been theoretically and empirically studied.  $Ti_3C_2$  MXene (TiO<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>) nanocomposite with modified TiO<sub>2</sub> nanoparticles that resembles an organ was created by (Wang *et al.*, 2015). They immobilized hemoglobin (Hb) on this technology to create a biosensor without the use of mediators. The TiO<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub> nanocomposite

was a biocompatible and superior matrix for immobilizing redox proteins, ensuring strong protein bioactivity and stability, according to spectroscopic and electrochemical data (Huang *et al.*, 2018). MXenes have been created for the detection of many other small molecules, including glucose and phenol, in addition to NH<sub>3</sub> and H<sub>2</sub>O<sub>2</sub>. For the sensitive detection of glucose, researchers created a glucose oxidase (GOx) enzyme immobilized Au/MXene nanocomposite. Besides, MXene integrated biosensors have some other functions too. List of some of the important MXeneintegrated biosensors is given below.

 Table 2. List of MXene integrated biosensors with analyte, sensing range, LOD and main achievements

| Formulation                                      | Analyte     | Sensing                    | Limit of      | Main achievements/diagnostics              |
|--------------------------------------------------|-------------|----------------------------|---------------|--------------------------------------------|
|                                                  |             | range                      | detection     | performance                                |
|                                                  |             |                            | (LOD)         |                                            |
| Prussian                                         | Exosomes    | $5 \times 102^{-5} \times$ | 229 particles | Detection of exosomes secreted by          |
| blue/Ti <sub>3</sub> C <sub>2</sub>              |             | 105                        | $\mu L^{-1}$  | various cancer cells (i.e., the breast     |
| MXene                                            |             | particles                  |               | cancer) cervical cancer cell line (Hela    |
|                                                  |             | $\mu L^{-1}$               |               | cells), and human ovarian cancer line      |
|                                                  |             |                            |               | (OVCAR cells) with high specificity in     |
|                                                  |             |                            |               | serum samples.                             |
| MXene–MoS <sub>2</sub>                           | MicroRNA    | 100 fm to                  | 26 fm         | Satisfactory selectivity, reproducibility, |
|                                                  |             | 100 nm                     |               | and stability were achieved by the         |
|                                                  |             |                            |               | MXene biosensors.                          |
| Ti <sub>3</sub> C <sub>2</sub> –MoS <sub>2</sub> | Toxic gases | 10–100                     | -             | The composite showed reaction signals      |
| MXene                                            |             | ppm                        |               | to some hazardous gases (i.e., $NO_2$      |
|                                                  |             |                            |               | ammonia and methane) and suggested         |
|                                                  |             |                            |               | multigas-detecting sensors that are very   |
|                                                  |             |                            |               | sensitive in the air.                      |
| MXene-Au                                         | Gram(-      | $3 \times 105^{-3} \times$ | 3 × 105 CFU   | Could detect bacteria sensitively and      |
|                                                  | ve)and      | 108                        | $mL^{-1}$     | showed antibacterial and photothermal      |
|                                                  | (+)bacteria | CFU mL <sup>-1</sup>       |               | sterilization effects.                     |

| Formulation                       | Analyte      | Sensing                | Limit of                               | Main achievements/diagnostics              |
|-----------------------------------|--------------|------------------------|----------------------------------------|--------------------------------------------|
|                                   |              | range                  | detection                              | performance                                |
|                                   |              |                        | (LOD)                                  |                                            |
| Ti <sub>3</sub> C <sub>2</sub> Tx | Carcinoemb   | 0.1–100 ng             | $0.001 \text{ ng mL}^{-1}$             | The biosensor illustrated high selectivity |
| MXene-Au                          | ryonic       | $mL^{-1}$              |                                        | compared with other common tumor           |
| NPs@                              | antigen      |                        |                                        | markers.                                   |
| polyimide thin                    |              |                        |                                        |                                            |
| film                              |              |                        |                                        |                                            |
| MXene N-                          | Glutathione  | 0.5–100                | 0.17 μm                                | It could be considered a promising probe   |
| Ti <sub>3</sub> C <sub>2</sub>    |              | μm                     |                                        | for detecting/showing cellular imaging     |
| quantum                           |              |                        |                                        | of glutathione in MCF-7 cells.             |
| dot/Fe <sup>3+</sup>              |              |                        |                                        |                                            |
| MXene-based                       | HER2-        | 102–106                | 47 cells mL <sup><math>-1</math></sup> | The MXene-based cytosensor might be        |
| cytosensor                        | positive     | cells mL <sup>-1</sup> |                                        | extended for detecting other tumor cells   |
|                                   | cancer cells |                        |                                        | and used in targeted drug delivery         |
| MXene-                            | Triple-      | 5 fm to 10             | 1.7 fm                                 | It could be applied as an idea for the     |
| derived                           | negative     | nm                     |                                        | green synthesis of MXene and a guide for   |
| quantum                           | breast       |                        |                                        | applying in the field of electrochemi      |
| dot@Au                            | cancer       |                        |                                        | luminescence sensing.                      |
| MXene @Au                         | Prostate-    | 5 pg mL $^{-1}$        | $0.83 \text{ pg mL}^{-1}$              | This biosensing system has been proved     |
| NPs@                              | specific     | to 10 ng               |                                        | to be a universal antifouling detection    |
| methylene                         | antigen      | $mL^{-1}$              |                                        | strategy by changing the recognition       |
| blue                              |              |                        |                                        | sequence of the peptides.                  |

(Source: (Maleki et al., 2022)

Again, according to (Zamhuri *et al.*, 2021), the detection of hydroxyburate ( $\beta$  -HBA) is made possible by the modification of Ti<sub>3</sub>C<sub>2</sub> nanosheets with hydroxyburate dehydrogenase. So, the use of MXene as biosensor or enzyme based biosensor has promising impact on bioengineering or biomedical engineering.

#### **3.4.2.** Cancer diagnosis and therapy

Another important application of MXene nanosheets is in cancer diagnosis and therapy. Rich surface functional groups on MXenes make it easy to combine them with other substances, such as surface-super paramagnetic iron oxide, g-C<sub>3</sub>N<sub>4</sub>, MnOx, zinc oxide, mesoporous silica nanoparticles, Au nanoclusters, or polymers, to create advanced functional nanocomposites with advanced therapeutic functionality. These materials can then be used to realize additional functionalities, such as a combination of photodynamic therapy and multimodal imaging (Maleki et al., 2022). PDT (Photodynamic Therapy) and PTT (Photo thermal Therapy) combined with a nano sonosensitizer could achieve excellent tumor-therapeutic efficacy. The addition of Ti<sub>3</sub>C<sub>2</sub> to g-C<sub>3</sub>N<sub>4</sub> may greatly boost the material's NIR absorption, which will then boost the photocatalytic activity of the resulting nanocomposites to produce more ROS. An ROS-augmented and mitochondria-targeted nanomedicine was created after further altering triphenyl phosphonium bromide on  $Ti_3C_2/g-C_3N_4$  ( $Ti_3C_2/g-C_3N_4$ -TPP) to fight cancer in conjunction with PTT. The study confirmed that because of application of NIR irradiation synergistic Type I and II PDT were activated. A lot of O<sub>2</sub> could be generated in the type II PDT and under low illumination by Ti<sub>3</sub>C<sub>2</sub>/g- $C_3N_4$  NSs breaking endogenous water. The electrons in g-  $C_3N_4$ 's valence band (VB) energized its conduction band (CB) through the type I PDT to produce photo activated electrons and holes. Water molecules and the excited holes interacted to form the -OH species. Under 808 nm laser illumination, Ti<sub>3</sub>C<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> nano composites at various concentrations showed a good photo thermal effect. Their comdined potential was higher than the normal Ti<sub>3</sub>C<sub>2</sub> nanosheets. The tumorbearing nude mice used in the in vivo multimode PTT and PDT experiments were used to demonstrate the Ti<sub>3</sub>C<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-TPP nanocomposites' potent anticancer activity. The Ti<sub>3</sub>C<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-TPP-treated group did not exhibit any abnormal blood biochemical indicators, indicating that the composite did not significantly cause renal and hepatic cytotoxicity. The H&E staining assay of the major organs, including the liver, kidney, lung, heart, and spleen, showed no substantial inflammation or chronic pathological damage following intravenous administration of the nanosheets for two weeks. These results validated that Ti<sub>3</sub>C<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-TPP nanocomposites are biocompatible (Maleki et al., 2022).



**Figure 6.** (A) Preparation of Ti<sub>3</sub>C<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>-TPP nanocomposites; (B) Using nanocomposites for mitochondrial-targeted PDT and PTT; (C) Digital images of MCF-7 tumor-bearing mice after different treatments during two weeks (Maleki *et al.*, 2022).

Again, MXene-based CEA (Carcinoembryonic antigen) detectors are used as cancer biomarkers. In MXene-based CEA detectors, carcinoembryonic monoclonal antibodies are covalently immobilized on single- or few-layered  $Ti_3C_2$  MXene coated with an amino group of the receptor (Zamhuri *et al.*, 2021). Some important examples of MXene-integrated nanocomposites for cancer therapy are mentioned in the table below.

| Formulation                                              | Cancer     | Combined therapy  | Main achievements and therapeutic      |
|----------------------------------------------------------|------------|-------------------|----------------------------------------|
|                                                          |            |                   | performance                            |
| Ti <sub>3</sub> C <sub>2</sub> -polyvinyl                | Colorectal | Iron chelation/   | The apoptotic cell death has occurred, |
| pyrrolidone@                                             | carcinoma  | chemotherapy/ PTT | and the iron depletion-induced iron    |
| doxorubicin jade                                         |            |                   | transferrin receptor (TfR) was down    |
|                                                          |            |                   | regulated.                             |
| Carbon dot@Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | Breast     | SDT/PTT           | The complete tumor ablation was        |
| heterojunctions                                          |            |                   | occurred due to the enhancement of     |
|                                                          |            |                   | ROS generation efficiency              |
| The assembly of                                          | Cervical   | Chemotherapy/PTT  | The blood perfusion and drug           |
|                                                          | carcinoma  |                   | extravasation were enhanced due to the |

| Table 3. List of exam  | ples of MXene integr  | rated nanocomposites | for cancer therapy |
|------------------------|-----------------------|----------------------|--------------------|
| Lable of List of chain | pres of thirdene mees | area manoe omposites | for cancer merup   |

| Formulation                               | Cancer     | Combined therapy  | Main achievements and therapeutic        |
|-------------------------------------------|------------|-------------------|------------------------------------------|
|                                           |            |                   | performance                              |
| Nb <sub>2</sub> C plasmon                 |            |                   | dilating tumor vessels by the            |
| (MXene),                                  |            |                   | photothermal properties of the           |
| Pt nanozymes, and                         |            |                   | composite.                               |
| DOX                                       |            |                   |                                          |
| Ti <sub>3</sub> C <sub>2</sub> @chitosan- | Pancreatic | CDT/PTT/magnetic  | The tumors were effectively inactivated  |
| MnFe <sub>2</sub> O <sub>4</sub>          |            | resonance imaging | due to the photothermal and              |
| (TC@Ch-MFO)                               |            |                   | CDT efficacy                             |
| Hydroxyapatite/chitos                     | Breast     | Chemotherapy/PTT  | The superior pH/NIR dual-responsive      |
| an/hyaluronic acid/                       |            |                   | drug delivery characteristics were       |
| MXene/ gold nanorods                      |            |                   | exhibited.                               |
| MXene@hydrogel                            | Melanoma   | Chemotherapy/PTT  | The high photothermal conversion         |
|                                           |            |                   | efficiency, as well as good photothermal |
|                                           |            |                   | stability, was exhibited.                |
| MXene@agarose/TNF                         | Colorectal | Chemotherapy/PTT  | The programmed cell deaths (PCD) of      |
| -α                                        | carcinoma  |                   | tumor spheroids were induced by an NIR   |
|                                           |            |                   | light due to the promoting proapoptotic  |
|                                           |            |                   | signaling pathway by the integrated      |
|                                           |            |                   | TNF-α.                                   |

(Source: (Maleki et al., 2022)

# 3.4.3. Regenerative medicine

Disease or trauma may cause organ failure or tissue damage, which leads to millions of deaths worldwide each year. Due to their versatility, biocompatibility, and biodegradability, as well as their capacity to create a biomimetic 3D microenvironment to support cell activity, hydrogels have attracted the most interest among the various scaffold biomaterials that have been utilized in tissue engineering. It is possible to incorporate conductive particles like MXenes into wound dressing materials (such hydrogels) to enhance their electrophysiological properties. The anti-inflammatory and immunomodulatory qualities of MXene-based biomaterials have been demonstrated in studies, and this makes them ideal for tissue engineering applications (Maleki *et al.*, 2022).

Examples of regenerative medicine using nanocomposites of MXene has been enlisted by (Maleki *et al.*, 2022) in tabular form. The table is given below:

| Formulation                             | Targeted | Combined | Main achievements                           |
|-----------------------------------------|----------|----------|---------------------------------------------|
|                                         | tissue   | therapy  |                                             |
| Bioglass@NbSiR                          | Bone     | PTT-IT   | The BG@NbSiR scaffold could eradicate       |
|                                         |          |          | primary tumors, boost the immune            |
|                                         |          |          | response, and suppress metastases by        |
|                                         |          |          | synergizing with checkpoint blockade        |
|                                         |          |          | Immune therapy, and accelerate              |
|                                         |          |          | osteogenesis in vivo.                       |
| MXene-                                  | Skin     | -        | Functioned as a physical barrier to colloid |
| amoxicillin–PVA                         |          |          | the amoxicillin and MXene, exhibited a      |
| nanofibrous                             |          |          | high antibacterial and accelerated wound    |
| membrane                                |          |          | healing capacity, which will advance the    |
|                                         |          |          | design of novel wound healing dressings     |
|                                         |          |          | and antibacterial strategies.               |
| Muscle-inspired                         | Skin     | РТТ      | The MXene-based hydrogel suppressed         |
| MXene                                   |          |          | bacterial infections without developing     |
|                                         |          |          | drug resistance                             |
| Ti <sub>3</sub> C <sub>2</sub> Tx MXene | Skin     | -        | Efficient anti-inflammation effects,        |
| nanosheets                              |          |          | promoting cell proliferation and the        |
|                                         |          |          | angiogenic process, stimulating             |
|                                         |          |          | granulation tissue formation, collagen      |
|                                         |          |          | deposition, vascular endothelial            |
|                                         |          |          | differentiation, and angiogenesis.          |
| Nb <sub>2</sub> C MXene-                | Bone     | PTT      | Niobium carbide MXene could promote         |
| integrated 3D-                          |          |          | the neogenesis and migration of             |
| printed                                 |          |          | blood vessels in the defect site, which     |
|                                         |          |          | could transport more oxygen, vitamins,      |

**Table 4.** List of MXene-integrated nanocomposites for regenerative medicine

| Formulation             | Targeted | Combined | Main achievements                         |  |
|-------------------------|----------|----------|-------------------------------------------|--|
|                         | tissue   | therapy  |                                           |  |
| bone-mimetic            |          |          | and energy around the bone defect for the |  |
| scaffold                |          |          | reparative process                        |  |
| MXene/hydroxya          | Bone     | PTT      | Using the MXene/hydroxyapatite-based      |  |
| patite                  |          |          | composite nanofiber, synergistic effect   |  |
| nanoparticle            |          |          | of photothermal performance and           |  |
|                         |          |          | osteogenic properties was deduced.        |  |
| Nb <sub>2</sub> C MXene | Skin     | -        | Promote angiogenesis and tissue           |  |
| titanium plate          |          |          | remodeling                                |  |

(Source: (Maleki et al., 2022)

Some of the important aspects of regenerative medicine is discussed below:

**3.4.3.1. Wound healing:** The biggest surface area on the outside of our bodies is the skin, which shields the interior organs from injury, infection, ultraviolet radiation, and extreme heat. Hence, any skin flaws might cause a number of illnesses, like wound infection, which can harm people's health. A good dressing for wound healing ought to maintain a steady temperature, guard against cell migration and proliferation, and be antibacterial. These reasons led Yang and colleagues (Maleki *et al.*, 2022) to create a hydrogel dressing that, when exposed to external electrical stimulation, might hasten wound healing since it was comprised of regenerated bacterial cellulose and MXene. The outcomes of an in vivo rat trial showed that the addition of external electrical stimulation to cellulose/MXene hydrogels had a substantial impact on cell activity. The MXene-integrated hydrogels with or without electric field caused the formation of new blood vessels, normal epithelium, less inflammation, higher density of fibroblasts, and better wound healing effect than a commercial film and cellulose hydrogel, according to histological analysis of healed tissues by H&E and Masson trichrome staining as well as the immunofluorescent staining for CD31 (Maleki *et al.*, 2022).



(Source: Maleki et al., 2022)

Figure 7. Wound healing process on days 0, 3, 7, and 14 in the different treated groups.

**3.4.3.2. Cardiac tissue engineering:** Cardiac failure is a disorder that can happen in a variety of circumstances and affects around 64 million individuals globally. The design and creation of conductive cardiac patches to support the cardiac patch's electrical coupling with the host tissue is one of the potential methods for enhancing heart tissue regeneration. To improve electro physiological properties for cardiac tissue engineering applications, many conductive polymers and particles have been included into hydrogels and cryogels, including carbon nanotubes, graphene, gold nanorods, and MXenes (Maleki *et al.*, 2022). Because of its exceptional resolution and versatility in printing on both hard and soft tissues, aerosol jet printing (AJP) is a good method for producing printed patterns at the cell scale. The AJP approach was used in a study to prepare MXene-integrated composites for use as a human cardiac patch. The alignment of the human induced pluripotent stem cell-derived cardiomyocyte (iCMs) on the constructed electroconductive cardiac patches was examined. The conductive Ti<sub>3</sub>C<sub>2</sub>Tx MXene was printed on polyethylene glycol (PEG) hydrogel in predesigned patterns. Immunostaining, qRT-PCR, and western blotting methods were used to determine the effects of MXene and patterning on the iCM phenotype and maturity. The immunostaining results on day 7 of incubation revealed some

expression of striated and aligned sarcomeric alpha-actinin and intercellular junction protein (the cytoskeletal actin-binding protein).

In another study, (Maleki *et al.*, 2022) revealed for tissue engineering applications, chitosan-based hydrogels containing  $Ti_3C_2$  MXene, honey, and fluorescent carbon dots were created. These hydrogels demonstrated favorable compatibility with various stem cell types as well as anti-inflammatory and antibacterial qualities. Besides, some other modifications using MXene nanosheets can be used for cardiac tissue engineering.

**3.4.3.3. Infection therapy:** By conjugating AuNCs to  $Ti_3C_2Tx$  MXene nanosheets, a synergistic antibacterial agent was introduced in 2020. This led to the synthesis of amine-modified  $Ti_3C_2Tx$  (MXene-NH<sub>2</sub>) using  $Ti_3C_2Tx$  and (3-aminopropyl) triethoxysilane. The bacterial membrane is physically damaged by the pointy MXene nanosheets, which enables the nanocomposites to integrate within bacteria. It was also reported that Au conjugation had increased the efficiency of 2D MXene. These nanomaterials increased the production of ROS (Figure 7 (A) in bacterial body. Thus the cell membrane and bacterial DNA (Figure 7B) were hampered and finally the bacteria degenerated. They also inhibited biofilm formation (Figure 7D, E). Despite the lack of an in vivo research, the synergistic action of the Au-conjugated MXene-based nanocomposites (Maleki et al., 2022). Despite the lack of an in vivo research, the synergistic action of the development of new, bacterial infection-fighting MXene-based nanocomposites (Maleki et al., 2022). Despite the lack of an in vivo research, the synergistic action of new bacterial infection-fighting MXene-based nanocomposites (Maleki et al., 2022). Despite the lack of an in vivo research, the synergistic action of the development of new, bacterial for the development of new, bacterial for the development of new bacterial infection-fighting MXene-based nanocomposites.



**Figure 8.** (A) Increase in ROS level and death in *Staphylococcus aureus*; (B) Relative lipid peroxidation level of *S. aureus*; (C) DNA damage index; (D) *S. aureus* and (E) *Escherichia coli* biofilm formation condition on the four structures (Maleki *et al.*, 2022).

### 3.4.4. Antimicrobial activity of MXene

Prior to the development of MXenes, the mode of action of nanomaterials based on graphene used in antibacterial applications relied on the generation of reactive oxygen species (ROS) and direct interaction with bacterial membranes. The first  $Ti_3C_2$  MXene colloidal solution requires a high concentration dose of 200 g mL<sup>-1</sup> to give positive inhibition for its antibacterial capabilities. But modified  $Ti_3C_2$  that has been treated with poly vinylidene fluoride (PVDF) significantly enhances the antibacterial properties (Zamhuri *et al.*, 2021).

The destruction of bacterial cells may be possible using MXenes' semiconducting characteristic. MXenes could exploit the reactive metal-F couples to move the reactive electrons to the surrounding cell membranes upon light excitation, analogous to semiconductors that produce negative electrons and positive holes, to produce cell death akin to type-I photodynamic treatment

(PDT). (Rasool *et al.*, 2016) looked into the use of  $Ti_3C_2$  in the application of antibacterial killing of *Bacillus subtilis* and *Escherichia coli* cells. To test the  $Ti_3C_2$  MXenes' capacity to prevent bacterial development, bacteria were cultivated with them for 4 hours. The potential of MXenes to considerably limit bacterial growth was validated by counting the number of colonies on the culture plate following treatment with various concentrations (0-200 mg ml<sup>-1</sup> of  $Ti_3C_2$ ). Their findings suggested that MXenes subjected bacterial cell membranes to oxidative stress.



**Figure 9.** (A) MXenes for antibacterial activity; (B) *E. coli* bacterial cells were recultivated after treatment for 4 h with 0 mgml<sup>-1</sup> (i), 10 mgml<sup>-1</sup> (ii), 20 mgml<sup>-1</sup> (iii), 50 mgml<sup>-1</sup> (iv), 100 mgml<sup>-1</sup> (v), and 200 mgml<sup>-1</sup> (vi) of Ti<sub>3</sub>C<sub>2</sub>, respectively (Huang *et al.*, 2018).

### **3.4.5.** Bioimaging

MXenes can function as imaging contrast agents for bioimaging in addition to biosensing and antibacterial activities. PAI and luminescence imaging are two of the highly developed imaging modalities of MXenes. MXenes are extremely desirable for PAI because of their higher photothermal conversion capacity. Due to the semimetal-like LSPR action of MXene nanosheets, broad spectral light is strongly absorbed and converted efficiently. It has been shown that different kinds of MXenes may absorb excitation light, transform photon energy into crystal vibrations, and then release the energy as heat on a macroscale. Several MXene compounds have demonstrated the photothermal effect (e.g.  $Ti_3C_2$ , Nb<sub>2</sub>C, and Ta4C3). MXenes have been used for luminescence cell imaging by utilizing the recently produced luminous MXene QDs. These MXene dots were useful for cell imaging after suitable surface modifications (Huang *et al.*, 2018).

MXenes can be utilized as contrast agents for X-ray and computed tomography (CT) in addition to PAI and luminescence imaging. Moreover, MXene conductivity can be used for bioimaging by monitoring changes in the electrical signal under specific conditions. For instance, MXenes were incorporated by (Xu *et al.*, 2016) into a patterned scaffold for neuron cell culture. As MXenes' conductivity is sensitive to its environment, it is possible to monitor cellular activity by observing variations in the field-effect of these materials. This technology can keep track of brain activity.

### 3.5. Application of MXene in Agricultural Bioengineering

### 3.5.1. MXene based pesticide delivery system in agriculture

Moern agriculture cannot help using chemical pesticides. It causes both environmental pollution and increase in cost of production as pesticide loss is more than 90% in our country. Therefore, it is urgently necessary to establish a smart pesticide delivery system (PDS) and create highefficiency, environmentally friendly pesticide formulations. (Song *et al.*, 2021) has developed a new composite using Avermectin and MXene  $Ti_3C_2$ . Avermectin (AV) is a low toxic biological pesticide. However, the substantial disadvantages of standard AV formulations, such as poor water solubility, quick photo-degradation, burst release, limited efficiency, and environmental unfriendliness, have made it extremely difficult to use them in the field. On the other hand, according to (Liu *et al.*, 2017) excellent adsorption capacity and a high drug loading rate of 84.2% are both characteristics of  $Ti_3C_2$ . So, (Song *et al.*, 2021) formulated AV@Ti\_3C\_2 pesticide delivery system. Fast adsorption efficiently loaded AV onto  $Ti_3C_2$ , resulting in the uniform and stable AV@Ti\_3C\_2 nanoformulation (Figure 10).





```
(Song et al., 2021).
```

The pH-response release behavior of AV@  $Ti_3C_2$  was different from the rapid loss of AV. Also, the significantly increased stability of AV@ $Ti_3C_2$  under UV light added to the assurance of its long-lasting activity. As a result, during the 14 days following spraying, AV@ $Ti_3C_2$  shown increased antipest activity. Also, our research demonstrated that  $Ti_3C_2$  is a secure pesticide delivery vehicle that has no detrimental effects on crop germination or growth. Only three ingredients make up the AV@ $Ti_3C_2$  nanoformulation in this study: water (solvent), AV (pesticide active ingredient), and  $Ti_3C_2$  (carrier). As a result, it is less harmful to the environment than conventional formulations, which frequently contain a significant amount of hazardous organic solvents or additives.

### 3.5.2. MXene based biosensors in the field of agriculture

**1. Biosensor for detection of Alfatoxin in food and agricultural products:** The deadly mycotoxins known as aflatoxins (AFs) are produced by the molds *Aspergillus flavus* and *Aspergillus parasiticus*, which are typically found in soil, hay, decaying plants, and grains. Cereals (wheat, rice, and corn), spices (coriander, turmeric, ginger, and black peppercorns), oilseeds (cotton, sunflower, and soybeans), and tree nuts (coconut, walnut, and almonds) are crops that are frequently impacted by *Aspergillus* species. Aflatoxicosis is a serious poisoning brought on by consuming too many aflatoxins, which are dangerous and frequently result in death (Parihar *et al.*, 2023). The biosensor-based detection of aflatoxin overcomes the drawbacks of traditional methods including LC/MS-MS, HPLC, and ELISA assays since it is rapid, less expensive, and requires less qualified workers. Because to their excellent mechanical strength, favorable biocompatibility, simplicity of surface functionalization, and tuneable optical and electrical properties, 2D MXenes prove to be an effective material for biosensing. Aptamers, in contrast, have higher selectivity, sensitivity, and ease of synthesis when used as biorecognition elements (BREs) than traditional BREs. Examples of some recently used aptamers for detection of alfatoxin is given below

| Biosensors               | Nanocomposites                         | Detection method         |  |
|--------------------------|----------------------------------------|--------------------------|--|
| Electrochemiluminescence | PANI/TiO <sub>2</sub> NPs              | Electrochemiluminescence |  |
| (ECL)                    |                                        | (ECL) signal             |  |
| Electrochemical          | MXene/NiCo <sub>2</sub> O <sub>4</sub> | Differential pulse       |  |
|                          |                                        | voltammetry (DPV)        |  |
| Ratiometric SERS         | MXenes SERS                            | Raman spectroscopy       |  |

**Table 5.** List of recently used aptasensor for detection of aflatoxins

(Source: (Parihar et al., 2023)

Till now the knowledge about preparing an aptasensor using MXene is at introductory level. Researchers may be able to develop and create aptasensors with fast binding kinetics for the detection of target molecules and short receptor-analyte interaction times by observing the existing information about the binding kinetics of receptors with target analytes.

**2. MXene biosensor for detecting CO<sub>2</sub>:** Constant carbon dioxide gas (CO2) emissions have a negative impact on crop yield, the environment, and human health. Due to crops' simultaneous respiration and photosynthesis, the dynamic concentration of emitted CO<sub>2</sub> in agriculture, particularly in restricted greenhouses, swings dramatically. CO<sub>2</sub> enrichment beyond 300 ppm prevents nitrate absorption into organic nitrogen molecules, which lowers crop productivity.So, detection of CO<sub>2</sub> at low concentration is very important. Till now the biosensors developed for detection of CO<sub>2</sub> are not that effective. As they detect CO<sub>2</sub> at very high concentration. The temperature requirement is also very high. According to (Zhou *et al.*, 2020), a nitrogen-doped MXene Ti<sub>3</sub>C<sub>2</sub>Tx (N-MXene)/polyethyleneimine (PEI) composite film adorned with reduced graphene oxide (rGO) nanosheets was creatively used to detect 8–3000 ppm CO<sub>2</sub> gas, overcoming the challenges of high operation temperatures and faint response experienced by conventional CO<sub>2</sub>-sensitive materials such as metal oxides. They can detect CO<sub>2</sub> at 20°C room temperature and at 8 ppm concentration. If we observe the following table the result will be clear

| Materials          | Temperature(°C) | <b>Detection limit (ppm)</b> | Carrier gas |
|--------------------|-----------------|------------------------------|-------------|
| LaFeO <sub>3</sub> | 300             | 2000                         | dry air     |
| ZnO                | 250             | 200                          | wet air     |
| CeO <sub>2</sub>   | 100             | 150                          | wet air     |
| rGO/N-MXene        | 20              | 8                            | wet air     |

Table 6. List of sensing performance of various biosensors for detection of CO<sub>2</sub>

(Source: (Zhou et al., 2020)

#### 3.5.3. Waste treatment using MXene

The vast quantities of wastewater that are released into the aquatic system are a growing threat to the ecosystem. Heavy metal ions and other harmful pollutants found in wastewater that are the result of various industrial processes can have a negative impact on human health, vegetation, and marine life. As solitary or nanocomposite adsorbents, the nanoscale materials have been extensively utilized for a variety of wastewater treatment applications. The economy has benefited from these products' accessibility, low price, and promising capacity to remove a variety of impurities. Using MXene as nanocomposite to remove waste and heavy metals is gaining interest. For the purpose of separating heavy metal cations ( $Pb^{2+}$ ,  $Cd^{2+}$ , and  $Cu^{2+}$ ) and co-existing anions (Cl and/or NO3) from wastewater, Wang et al. (2021) used a laminar hydroxylated MXene membrane (Naji et al., 2023). A new nanocomposite membrane made of a separation layer of chitosan-coated MXene nanosheets was created by Lin et al. in 2022 and placed over a support layer of a PVDF mixed-matrix membrane that had undergone  $g-C_3N_4$  photocatalyst modification (Naji et al., 2023). But still a lot of work on using these nanocomposites is necessary. MXene should go through thorough, extended examination, just like any metal-based nanoscale materials, to determine its stability within the polymeric membrane and ultimate placement in water streams. MXene stability is a serious issue since MXene breakdown could result in harmful metabolites that could affect the ecosystem. Also, MXene is susceptible to oxidation, while it is unknown how this problem would limit the MXene's potential.

#### 3.5.4. GMO crops detection using MXene biosensors

With the help of transgenic technology, which alters organisms' genetic makeup using contemporary molecular biology techniques, crops can be genetically engineered to be highly nutritious, ideal for storage, and resistant to pests and herbicides. The safety concerns surrounding genetically modified food and crops, as well as some possible effects on the environment and society, have drawn considerable attention worldwide as commercialisation continues to rise. Thus, there is an urgent need for the development of precise, sensitive, and practical detection technologies for genetically modified crops and food. According to the detection targets, there are now two primary categories for detecting genetically modified crops and food: protein-based immunoassay and DNA-based polymerase chain reaction (PCR) technologies. But they have their own shortcomings. A new technique for detection of GMO crops can be use of MXene based biosensors. According to (Chen *et al.*, 2021) for the purpose of identifying the transgenic protein Cry1Ab in genetically modified (GM) crops, an MXene-catalyzed Faraday cage-type electrochemiluminescence (ECL) immunosensor was created. With limit of detections (LODs) of 0.001 ng mL<sup>-1</sup> and 0.001%, respectively, Cry1Ab protein and GM maize MON810 could both be quantitatively detected under the most favorable experimental circumstances. All of the criteria selectivity, stability, repeatability, precision, and accuracy—were met. The effective detection of genuine samples demonstrates the potential of these biosensors for use in agricultural and food safety.

#### **3.6. Future outlook**

MXenes are a fascinating class of 2D nanomaterials that are attracting attention in biomedical engineering applications, such as biosensors, cancer therapy, infection treatment, and regenerative medicine and in agricultural aspects. These nanomaterials have remarkable promise for tissue engineering, drug delivery, antibacterial characteristics, and high surface area to volume ratio, and broad-spectrum near-infrared absorptionBecause of their outstanding antibacterial action, MXenes' chemistry makes it possible for them to be used in traditionally unexplored areas, such as the surface coating of medical devices including catheters, masks, and gloves. It has also been noted that MXenes are elastic and flexible (Zamhuri *et al.*, 2021). Moreover, MXenes can be

coupled with other materials to greatly improve their performance in biomedical applications above that of their solo equivalents. Although MXenes have distinct features and have shown a lot of promise for biomedical applications, there are still a lot of obstacles in the way of their clinical implementation. MXenes' long-term biosafety hasn't been systematically evaluated. The majority of these investigations were focused on cell experiments or short-term hematological assays, despite the fact that numerous studies have shown that the MXenes currently available for biomedical purposes are typically biocompatible and some of them are even biodegradable in vivo. Further biological uses will require systematic research on the biosafety of MXenes. Though in a very recent finding, ( Xu *et al.*, 2016) has confirmed that  $Ti_3C_2$  coated soybean phospholipid inserted into the nude mice was completely excreted through the body. Another showed nontoxic to fish.

The absence of guidelines for safety testing that all researchers must follow creates another obstacle to employing these composites for cancer therapy and tissue regeneration. Moreover, tests for toxicity must be carried out using models of both health and disease. Comprehensive studies are also required to establish links between the properties of composites, the experimental parameters, and their toxicity because different composites are created utilizing diverse MXenes exposed to various chemicals and with varying sizes and compositions. Collaboration with molecular biologist is essential for complete understanding the function. There are currently no reports on how MXene affects the human physiological system. Another area of research that has received less attention to date but requires more attention is the potential impact of MXene composites on stem-cell engineering via thermo modulation and electrical signaling. This area of research has the potential to support the creation of a new generation of hydrogel-based 3D-cell cultures and regenerative tools. To ensure there is no environmental risk after discharge, it is also necessary to investigate more ecologically friendly processing methods. With the recent increase in scientific confidence in MXenes, hopefully, the aforementioned difficulties will soon be overcome and the ongoing research in MXene composites will result in outstanding biological advancements.

#### **CHAPTER IV**

### CONCLUSION

MXene is newly emerged 2D material made of a layer of early transition metal and n numbers of layers of either carbon or nitrogen with a general formula of  $M_{n+1}X_n$ . The conversion of MAX phase to MXene follows either top down or bottom up technique to remove the A layer (an A group element mostly main group IIIA or IVA). Among the two methods top down is more popular and frequently used. Although both the methods have some drawbacks that needs to be overcome for nontoxic application of MXene in cell and bioengineering. Electrochemical, optical, magnetic properties are some of the important properties of MXene. Using these properties alteration in MXene composition is possible for using them in bioengineering.

Application of MXene in biomedical engineering is gaining popularity day by day. The high surface area for drug loading and distribution, the good hydrophilicity for biocompatibility, and other electronic features for computed tomography (CT) scans and magnetic resonance imaging make MXenes also exhibit favorable biological characteristics (MRI).Some of the application of these nanocomposites in biomedical engineering includes biosensors, cancer therapy, bioimaging, tissue regeneration and antibacterial approaches. The application will be broaden in the future with proper research and experimentation.

Application of MXene in agricultural sector may be considered as the most recent approach. Researchers are moving with caution for applying this nanocomposite in agriculture as it may directly affect human health. Till now, application of MXene is confined to manufacturing biosensors for sensing various gases like CO<sub>2</sub>, NH<sub>3</sub>, some toxins like alfatoxin and formulation of pesticide delivery system. Their application in sensing genetically modified crops is also seen. Waste water treatment and detection of heavy materials using this nanoparticle is gaining popularity. Though this sector also needs extensive research and experimentation.

### REFERENCES

- Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., & Gogotsi, Y. (2017). Guidelines for synthesis and processing of two-dimensional Titanium Carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene). *Chemistry of Materials*, 29(18), 7633–7644.
- Berdiyorov, G. R., & Madjet, M. E. (2016). Structural, electronic transport and optical properties of functionalized quasi-2D TiC<sub>2</sub> from first-principles calculations. *Applied Surface Science*, *390*, 1009–1014.
- Cai, J., Han, X., Wang, X., & Meng, X. (2020). Atomic layer deposition of two-dimensional layered materials: processes, growth mechanisms, and characteristics. *Matter*, 2(3), 587– 630.
- Chen, X., Zhang, D., Lin, H., Wei, W., Hao, T., Hu, Y., Wang, S., & Guo, Z. (2021). MXene catalyzed Faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops. *Sensors and Actuators B: Chemical*, 346(August), 130549.
- Ghidiu, M., Halim, J., Kota, S., Bish, D., Gogotsi, Y., & Barsoum, M. W. (2016). Ion-exchange and cation solvation reactions in Ti<sub>3</sub>C<sub>2</sub> MXene. *Chemistry of Materials*, 28(10), 3507–3514.
- Guo, Z., Miao, N., Zhou, J., Sa, B., & Sun, Z. (2017). Strain-mediated type-I/type-II transition in MXene/Blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. *Journal of Materials Chemistry C*, 5(4), 978–984.
- Huang, K., Li, Z., Lin, J., Han, G., & Huang, P. (2018). Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. *Chemical Society Reviews*, 47(14), 5109–5124.
- Liang, X., Rangom, Y., Kwok, C. Y., Pang, Q., & Nazar, L. F. (2017). Interwoven MXene nanosheet/Carbon-nanotube composites as Li–S cathode hosts. *Advanced Materials*, 29(3), 1–7.
- Liu, G., Zou, J., Tang, Q., Yang, X., Zhang, Y., Zhang, Q., Huang, W., Chen, P., Shao, J., & Dong, X. (2017). Surface modified Ti<sub>3</sub>C<sub>2</sub> MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials and Interfaces, 9(46), 40077–40086.
- Maleki, A., Ghomi, M., Nikfarjam, N., Akbari, M., Sharifi, M., Shahbazi, M. A., Kermanian, M., Seyedhamzeh, M., Zare, E., Mehrali, M., Moradi, O., Sefat, F., Mattoli, V., Makvandi, P., & Chen, Y. (2022). Biomedical applications of MXene-integrated composites regenerative medicine. In *Advanced Functional Materials*, *32(34)*, 220-343.
- Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti<sub>3</sub>AlC<sub>2</sub>. Advanced Materials, 23(37), 4248–4253.
- Naji, M. A., Salimi-kenari, H., Alsalhy, Q. F., Al-juboori, R. A., Huynh, N., Rashid, K. T., & Salih, I. K. (2023). Novel MXene-modified polyphenyl sulfone membranes for functional nanofiltration of heavy metals-containing wastewater. *Membranes*, 13(3), 357.

Parihar, A., Choudhary, N. K., Sharma, P., & Khan, R. (2023). MXene-based aptasensor for the

detection of aflatoxin in food and agricultural products. *Environmental Pollution*, 316(1), 120-695.

- Ran, J., Gao, G., Li, F. T., Ma, T. Y., Du, A., & Qiao, S. Z. (2017). Ti<sub>3</sub>C<sub>2</sub> MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. *Nature Communications*, *8*, 13907.
- Rasool, K., Helal, M., Ali, A., Ren, C. E., Gogotsi, Y., & Mahmoud, K. A. (2016). Antibacterial activity of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene. *ACS Nano*, *10*(3), 3674–3684.
- Shao, B., Liu, Z., Zeng, G., Wang, H., Liang, Q., He, Q., Cheng, M., Zhou, C., Jiang, L., & Song, B. (2020). Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. *Journal of Materials Chemistry A*, 8(16), 7508–7535.
- Singh, A. K., Kumar, V., & Kawazoe, Y. (2005). Thorium encapsulated caged clusters of germanium: Th@Gen, n = 16, 18, and 20. *Journal of Physical Chemistry B*, 109(32), 15187–15189.
- Song, S., Jiang, X., Shen, H., Wu, W., Shi, Q., Wan, M., Zhang, J., Mo, H., & Shen, J. (2021). MXene (Ti<sub>3</sub>C<sub>2</sub>) based pesticide delivery system for sustained release and enhanced pest control. ACS Applied Bio Materials, 4(9), 6912–6923.
- Wang, F., Yang, C. H., Duan, M., Tang, Y., & Zhu, J. F. (2015). TiO<sub>2</sub> nanoparticle modified organ-like Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. *Biosensors and Bioelectronics*, 74, 1022–1028.
- Xiao, X., Yu, H., Jin, H., Wu, M., Fang, Y., Sun, J., Hu, Z., Li, T., Wu, J., Huang, L., Gogotsi, Y., & Zhou, J. (2017). Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano, 11(2), 2180–2186.
- Xu, B., Zhu, M., Zhang, W., Zhen, X., Pei, Z., Xue, Q., Zhi, C., & Shi, P. (2016). Ultrathin MXene-Micropattern-Based Field-Effect Transistor for Probing Neural Activity. *Advanced Materials*, 28(17), 3333–3339. https://doi.org/10.1002/adma.201504657
- Xu, C., Wang, L., Liu, Z., Chen, L., Guo, J., Kang, N., Ma, X. L., Cheng, H. M., & Ren, W. (2015). Large-area high-quality 2D ultrathin Mo<sub>2</sub>C superconducting crystals. *Nature Materials*, 14(11), 1135–1141.
- Zamhuri, A., Lim, G. P., Ma, N. L., Tee, K. S., & Soon, C. F. (2021). MXene in the lens of biomedical engineering: synthesis, applications and future outlook. *BioMedical Engineering Online*, 20(1), 1–24.
- Zhou, Y., Wang, Y., Wang, Y., & Li, X. (2020). Humidity-enabled ionic conductive trace Carbon Dioxide sensing of Nitrogen-Doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene/Polyethyleneimine composite films decorated with reduced Graphene Oxide nanosheets. *Analytical Chemistry*, *92*(24), 16033–16042.