Annals of Bangladesh Agriculture
Journal homepage: bsmrau.edu.bd/aba

ORIGINAL ARTICLES

Population size structure and breeding biology of Puntius sophore in the old Brahmaputra river, Bangladesh

Sutapa Debi ${ }^{1}$, Mohammad Abdus Salam ${ }^{1}$, Mohammad Lutfar Rahman ${ }^{1}$, Md. Shakhawate Hossain ${ }^{2}$ and Sabuj Kanti Mazumder ${ }^{1 *}$
'Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
${ }^{2}$ Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

ARTICLE INFO

Keywords:

Pool barb, eecundity, GSI, condition factor, sex ratio.

Received : 10 October 2023
Revised : 19 December 2023
Accepted : 30 December 2023
Published : 30 December 2023

Citation:

Debi, S., M. A. Salam, M. L. Rahman, M. S. Hossain and S. K. Mazumder. 2023. Population size structure and breeding biology of Puntius sophore in the old Brahmaputra river, Bangladesh. Ann. Bangladesh Agric. 27(2): 59-70.

Abstract

The pool barb (Puntius sophore) is an indigenous freshwater species of Bangladesh. The population size structure, sex ratio, condition factor, gonadosomatic index, and fecundity of P. sophore were estimated as biological parameters in the present study. A total of 480 specimens were collected in 12 months from the River Brahmaputra between July 2019 and June 2020. Length-frequency data revealed that the length of the maximum number (155) of individuals in catch sample was in $9-11 \mathrm{~cm}$ intervals. The average male: female ratio was 1.0:1.4 indicating female dominance in the population throughout the year though there was no significant difference between the sex ratio ($\chi^{2}=0.34, P>0.05$). Mean condition factor (K) was different in different months. Both sexes experienced the highest condition factor (K) in June, and the lowest in February and January, respectively. The GSI in both sexes fluctuated significantly in different months and showed one peak in June. Total fecundity varied from 960 to 5680 (3116 ± 1411). The arithmetic equations of fecundity against TL, BW, and OW were $F=3409.33+615.35 \mathrm{TL}$, $F=462.47+40.20 B W$, and $F=2932.9+2839.32 O W$ respectively. The scatter diagram between fecundity with TL, BW, and OW demonstrated a linear relation and positive association between the three variables. The findings of this investigation offer baseline information on a few biological characteristics of P. sophore, information that will help forecast the reactions of P. sophore populations in the Old Brahmaputra River.

Introduction

The pool barb (Puntius sophore) is an indigenous freshwater fish species of Bangladesh. The population size structure, sex ratio, condition factor, gonadosomatic index, and fecundity of P. sophore
were estimated as biological parameters in the present study. The development of effective management and conservation plans for fish requires a thorough understanding of their biology. Fish have a wide range of reproductive tactics, and within a genus, the tactics typically reflect environmental stability,

[^0]habitat specificity, and reproductive opportunity. The quantitative aspects of fish like size distribution, sex ratio, condition factor, fecundity, and gonadosomatic index (GSI) are important tools for studying fish physiology (Barman et al., 2023). A fish population size structure can be thought of as a "snapshot" that depicts the interplay between the dynamic rates of recruitment, growth, and mortality (Guy and Brown, 2007; Sultana et al., 2023). Investigations of fish ecological and life-history characteristics are revealed through size structure and length frequency distribution. The sex ratio gives fundamental data to determine stock size and evaluate the reproductive capacity of fish populations (Oliveira et al., 2012; Mazumder et al., 2022). The condition factor is commonly used to analyses the wellbeing of fishes in natural environment (Daliri et al., 2012). The condition factor of ≥ 1 indicates the good condition of fish while the ≤ 1 show bad condition (Abobi, 2015). Based on the idea that bigger fish are in better condition than lighter fish, condition factor (K) is an evaluation of fishes' overall health (Mon et al., 2020; Mazumder et al., 2021). The Gonado-somatic index (GSI) is a method for observing seasonal changes in gonad weight to body weight during the spawning season which is frequently used to determine a fish's reproductive cycle (Kokokiris et al., 2014). Additionally, determining fish fecundity is crucial to studies of fish population dynamics because it improves our capacity to estimate recruitment and population growth rates and deepens our understanding of observed changes in reproductive output. Fishes have a variety of reproductive strategies, and the strategy within a genus generally reflects environmental stability, habitat specificity, and reproductive opportunities.

The consumption of small indigenous fish species (SIS, maximum length $\leq 25 \mathrm{~cm}$) was common among South Asian rural people (Minkin, 1993). The most commonly preferred species were Amblypharyngodon mola, Chela cachius, and Puntius sophore (Rahman et al., 2018). Millions of rural residents in the area rely mostly on these species for their protein needs, and the majority of them are significant commercial producers. The
pool barb, spotfin swamp barb, or stigma barb P. sophore is native to inland waters in Asia and is found in Southeast Asian counties (Froese and Pauly 2016). In Bangladesh, this species holds significant commercial value (Froese et al., 2011; Rahman et al., 2012, 2018, Sarkar et al., 2019) and is also a well-liked aquarium fish (Froese and Pauly, 2016). Though, it was one of the dominant species in Bangladesh waters (Rahman et al., 2018) but its stock in the Brahmaputra is decreasing as a result of several factors and is considered as a nearthreatened species (Sarkar and Banerjee, 2010). It is afraid that this fish may disappear unless proper steps are urgently taken to protect the fish from extinction.

Previous studies have been conducted on the P. sophore population, including biology, lengthweight relationship, and relative condition factor in Indian waters (Talwar and Jhingran, 1991; Reddy and Rao 1992; Menon 1999); growth in the Jamuna River, Bangladesh (De Graaf, 2003); length-weight and length-length relationships in the Mathabhanga river, Bangladesh (Hossain et al., 2006); biometric relationships in three major rivers (Hossain et al., 2013); and reproductive biology from Gazipur and Jessore (Hasan et al., 2018). However, comprehensive studies are limited to the detailed aspects of the reproductive biology of P. sophore. Additionally, gaining a fundamental grasp of a fish species major biological processes is essential for successful fish culture to raise the species conservation status (Samad et al., 2017). The most important thing is the knowledge of reproductive biology to have realistic, excellent natural spawning, ideally in several populations spread out throughout the year. The present investigation was designed to examine and update the knowledge of P. sophore's size distribution, sex ratio, condition factor, gonadosomatic index, and fecundity of P. sophore over the year. These efforts will help to determine the reproductive biology of this species to ensure the best physiological performance during the captive culture system and conserve the species with sustainable aquaculture.

Materials and Methods

Sample collection and experimental site

A total of 480 specimens $(10.3 \pm 1.03 \mathrm{~cm}$ TL and $10.6 \pm 3.18 \mathrm{~g}$ BW) were collected monthly (12 months) from the River Old Brahmaputra (Fig. 1).
debris were removed from the surface of the body (Mazumder et al., 2016). The fish were dissected, and gonads were taken out and put on a glass slide to identify the sex. Following the addition of a few drops of acetocarmine stain, the gonads were compressed with a cover slip. The plates were examined under a microscope to determine the fish's

Fig. 1. Map showing the sampling site.

On board, a local fishing boat, traditional fishing equipment such as a three-layered trammel net, cast net, scoop net, and trap were used to capture fish samples. After hauling, the catch was taken out, and thoroughly washed, and specimen identification was done using the fishes' surface markings as well as their morphometric and meristic characteristics.

The collected fish were transported to the Department of Genetics and Fish Breeding (GFB) laboratory and the hatchery complex at Bangabandhu Sheikh Mujibur Rahman Agricultural University for analysis.

Size proportion and sex ratio

The fish's total length (TL) was measured from the tip of the snout to the base of the tail end measured to the nearest 0.1 cm by using a measuring scale. An electronic balance (Docbel BRAUN) was used to measure the body weight (BW) and gonad weight (GW) up to 0.01 g after adherent water and other
sex. After counting the total number of individuals of the two sexes in the monthly collected samples, the variation in the sex ratio over time was examined. Using the Chi-square (χ^{2} test) test, the discrepancies between the sex ratio and the expected ratio of $1: 1$ were calculated.

Condition factor

The Fulton condition factor (K) of P. sophore, hereinafter referred as fitness, was calculated according to Fulton (1904) which relates the fish's body length to its weight:

$$
K=100^{*} B W / T L^{3}
$$

Where, $B W$ is the observed individual fish weight in grams (g), $T L$ is the observed individual fish total length in centimeters (cm), and 100 is a factor to bring the value of K near unity.

Gonado somatic index (GSI)

Fish ovaries were inspected macroscopically in the lab, and fresh tissue was used to note characteristics such as color, texture, form, and turgidity. Each fish was assigned to a reproductive phase based on these characteristics. According to Solomon and Ramnarine (2007), paired gonads were individually weighed to the nearest 0.01 g , and GSI was computed:

$$
G S I(\%)=\left(\frac{G W}{B W}\right) \times 100
$$

Where, $G W$ is the wet weight of the gonad, $B W$ is the body weight of the fish.

Fecundity estimation

Using the gravimetric approach, the fecundity of P. sophore was estimated. The weight of freshly dissected ovarian tissue was measured to the nearest 0.01 g . Each pair of ovaries had its exterior connective tissues scraped off. The ovaries were dried out by wiping them with paper. Each ovary had three subsamples collected from the base, middle, and apical regions, and each was weighed to the nearest 0.01 g . Each subsample's eggs were counted, and the projected total number of eggs in each ovary was reported as overall fecundity.

Fecundity $(F)=($ no.of eggs \times weight of gonad)/ weight of gonad sample

The relationships of fecundity (F) to total length (TL), BW and GW were examined by correlation analysis (Simon et al., 2009).

Statistical analysis

Prior to statistical analysis, the KolmogornovSmirnov test was performed to determine whether all data had normal distribution, and Bartlett's test was used to see whether the variances were homogenous (Sokal and Hohlf, 1995). Throughout the sampling period, a chi-square (χ^{2} test) was used to look for any associations between month and sex. To examine the impact of monthly variation in condition factor (K) and GSI, analysis of variance and Tukey's post hoc tests were performed. Fecundity was found to be linearly related to TL, BW, and GW. $P<0.05$ was used as level of significance for each analysis. Every outcome was presented as mean \pm S.E. Software programs Origin ${ }^{\text {TM }}$ v 2016 and Minitab v 17 were used for all statistical analyses.

Results

Length-frequency distribution

The collected males and females ranging in total length from 7 to 11 cm and 7.8 to 13.1 cm respectively. The mean total length was found to vary from 8.3 (December) to 9.88 (April) for males and 9.4 (December) to 11.07 (September) for females. The length-frequency distribution of P. sophore from the Old Brahmaputra River showed that the length of a maximum number (>140) of individuals of a catch or catch sample were in 9-11 cm length interval, while the fish with a total length of 8-9 cm and $11-12 \mathrm{~cm}$ were in around 70 samples of catch. The fish remaining total length $<8 \mathrm{~cm}$ and $>12 \mathrm{~cm}$ contained less than 20 number of samples (P <0.05) (Fig. 2).

Fig. 2. Length frequency distribution of P. sophore from the Old Brahmaputra River, Mymensingh.

Sex ratio

Data presented in Table 1 reveals no significant difference among all the parameters $(P>0.05)$ from randomly collected samples in every month. The number of males and females of P. sophore caught each month was used to calculate the sex ratios male: female (M: F). Out of 480 fishes, 199 (41.5\%)
in different months. The mean K value of male P. sophore started to increase steadily from February to March. After being stable, it begins to rise sharply from April and reached to peaks in June. From June to August, it then begins to fall gradually. From August, it dropped progressively to September and continued

Table 1. Number of males and females Puntius sophore collected by month; total length range (cm), mean total length (cm), standard deviation (SD) and sex ratio (M: F), coupled with χ^{2} test's value, degrees of freedom (df) and probability (P)

Month	Males				Females				Sex ratio		df	p
	N	range	mean	SD	N	range	mean	SD	M : F	χ^{2}		
January	16	8.5-11	9.1125	0.59	24	8.5-11.6	10.04	0.91	1:1.50	1.6	1	0.20
February	18	$\begin{aligned} & 9.0- \\ & 10.3 \end{aligned}$	9.57	0.53	22	9.8-11.5	10.43	0.56	1:1.22	0.4	1	0.52
March	16	$\begin{aligned} & 8.0- \\ & 11.0 \end{aligned}$	8.93	0.80	24	8.2-11.8	10.18	0.79	1:1.50	1.6	1	0.20
April	19	$\begin{aligned} & 9.0- \\ & 10.8 \end{aligned}$	9.88	0.55	21	$\begin{gathered} 10.0- \\ 12.0 \end{gathered}$	10.81	0.68	1:1.10	0.1	1	0.75
May	14	8.3-10	9.11	0.50	26	9.2-12.4	10.32	0.82	1:1.85	3.6	1	0.06
June	18	$\begin{aligned} & 7.4- \\ & 10.9 \end{aligned}$	9.33	0.91	22	8.9-12.2	10.65	0.94	1:1.22	0.4	1	0.52
July	16	$\begin{aligned} & 8.3- \\ & 10.3 \end{aligned}$	9.18	0.87	24	8.0-13.0	10.57	1.27	1:1.50	1.6	1	0.20
August	14	8.1-9.3	8.98	0.46	26	7.8-12.6	10.54	1.10	1:1.85	3.6	1	0.06
September	19	$\begin{aligned} & 8.3- \\ & 10.5 \end{aligned}$	9.54	0.54	21	9.4-13.1	11.07	0.93	1:1.10	0.1	1	0.75
October	16	$\begin{aligned} & 9.9- \\ & 11.0 \end{aligned}$	9.67	0.58	24	$\begin{gathered} 10.0- \\ 12.0 \end{gathered}$	10.75	0.60	1:1.50	1.6	1	0.20
November	17	7.9-9.7	8.96	0.52	23	9.2-11.3	10.69	0.87	1:1.35	1.2	1	0.61
December	20	7.0-9.6	8.3	0.64	20	8.0-11.0	9.4	0.74	1:1.0	0.1	1	0.75

were male and 281 (58.5\%) were female. Monthly sex ratio between males and females ranged from 1:1.0 (December) to $1: 1.85$ (May, August) and average was 1: $1.40\left(\chi^{2}=0.34, P>0.05\right)$ which indicates that female's dominance over males in the Old Brahmaputra River population of P. sophore throughout the year.

Condition factor (K)

Mean condition factor (K) was different in different to be stable until November. For male P. sophore,
the mean K value peaked in June (1.22 $\pm 0.09)$ and fell in February (0.86 ± 0.03) (Fig. 3a). However, the mean K value of male P. sophore was different significantly from others $(P<0.05)$. Similarly, mean K value of female P. sophore increased gradually from January to June to reach the apex and then started to decrease gradually to November 2020. However, the mean condition factor in June (1.41 ± 0.09) was different significantly $(P<0.05)$ from rest of the months (Fig. 3b).

Fig. 3. Monthly changes in mean condition factor of P. sophore (a) male and (b) female from the Old Brahmaputra River, Bangladesh. Values are mean \pm SE. Different letters above the mean values indicate significant differences in mean condition factors at $\boldsymbol{P}<\mathbf{0} \mathbf{0 5}$.

Gonadosomatic index (GSI)

Fig. 4 depicts the fluctuation in GSI that occurs during the reproductive cycle in both male and female adult fish. GSI in male P. sophore remained stable from January to March and then started to increase gradually. The mean GSI reached the peak in June and lessened in August. However, from August the mean GSI values dropped sharply to October 2020. The mean GSI values for male P. sophore in June, July, and August, however,
differ significantly from those of the other months ($P<0.05$). Similar to male fish, female fish's GSI increased steadily from a minimum in January to a maximum in June and July. It dropped to a low level in August, showing that spawning had taken place. But starting in August, the GSI started to fall, and it did so through December. Nevertheless, female had significantly varied mean GSI values between months ($P<0.05$) (Fig. 4).

Fig. 4. Changes in the mean and range of the gonadosomatic index on a monthly basis for male (.......) and female (O....O) P. sophore through the fish's reproductive cycle. Each point represents the average of 40 fish.

Fecundity

Total fecundity of P. sophore varied from 960 to 5680 (3116 ± 1411). With increasing TL, BW, and OW, the fecundity increased. The arithmetic equations of fecundity against TL, BW, and OW gave the following results: $F=3409.33+615.35$
worth of data, which was essential for gaining a thorough understanding of the life history of this commercially significant species and for the creation of effective stock enhancement and management programs. The assessment of the catch's status was collected from the species from the Old Brahmaputra River, Mymensingh by length-frequency

Fig. 5. Scatter diagrams showing the relationship between fecundity and TL (a), BW (b), and OW (c) of P. sophore from the Old Brahmaputra River. The solid circle represents individual fish fecundity whereas solid bar represents linear fit.

TL, $F=462.47+40.20 B W$, and $F=2932.9+$ 2839.32 OW (Fig. 5). The scatter diagram between fecundity with TL, BW, and OW of P. sophore demonstrated a linear relation between fecundity with the two variables and showed a close and positive association between the three variables (Fig. 5).

Discussion

The present study examined certain fundamental population biological parameters utilizing a year's
distribution containing $9-11 \mathrm{~cm}$ total length of the maximum sample. Mean total length was highest in April and September for males and females, respectively. Seasonal differences in the sex ratio were seen, but the overall tendency of more females persisted. According to P. sophore's monthly sexratio data, there is a female predominance males in the population, which is different from the expected ratio of 1:1. The sex ratio was at its peak in May and August, where it included a 1.00:1.85 ratio, indicating that females were substantially bigger and larger than males. The result obtained in the present
work showed that females dominated the natural population throughout the year, according to the percentage of each month and the total percentage of males and females, which is similar to the studies by Yesilyurt (2019), Das et al., (2018), Rahman et al. (2018) but differed from Gogoi and Goswami's findings (2014). However, several authors (Adebiyi, 2013; Okey, 2018) came to the conclusion that the metabolic strain of spawning was often larger in older males than in older females, resulting in increased mortality among male than females, especially during the spawning season. According to Parker (1992), increased female body size in fish is typically a selective reaction to increased fecundity, and it has been linked to changes in male body size (Young, 2005). Rahman et al., (2018) also observed female dominance in the P. sophore in the Padma River of Bangladesh. The current study shows that for P. sophore, June to August was the ideal time to gather brooder from the wild for spawning. However, appropriate measures must be taken to protect the fish species in their native habitat.

The present study represent the value of the condition factor is greater than 1 from May to August for males and March to August for females indicating that the fishes were in good condition and the value was significantly higher in June for males (1.2) and females (1.4) where females appeared to be in slightly better condition than males, indicating that this coefficient is affected by genital product maturation which could be due to food proficiency, physiological or other better environmental factors of the water body, differed from Das et al., (2018) who explained males appeared to be in slightly good condition. Probably due to very high metabolic rates, the condition factor of P. sophore, decreases at the start of the spawning period, gradually increases during the reproductive period, and then returns to normal. The fish were physiologically in stable condition at least in the Old Brahmaputra River, Bangladesh, as evidenced by the mean condition factors (K), which were around 1.0 in all seasons with the exception of January and February. For both sexes of P. sophore, the monthly variation in mean K values revealed a single peak in June. The
relationship between condition factor and gonad weight revealed that K value rose with increasing gonad weight, peaked shortly before spawning, then fell throughout the spawning month due to the loss of gonadal products, validating May to August as the spawning months for this fish species. Similar results were also found by Hasan et al., (2018).

The present study showed an interesting feature on the gonado-somatic index where females had a higher GSI than males, increasing from May to August and the mean GSI values increased, with two peaks in June for males and June, and July for females which is more or less similar to Hossain et al. (2012) but differs from Yesilyurt (2019). As was previously stated, there is a relationship between GSI and spawning periodicity; GSI tends to rese with gonad maturation (beginning of breeding season), reach its peak during the period of peak maturity, and then suddenly decline after that as the fish exhausts itself following gamete extrusion and/or reabsorption (Gupta and Banerjee, 2013). As a result, when the GSI value of any fish species is studied on a monthly basis, the month(s) in which the GSI value(s) reaches its peak(s) represents the spawning period for that particular fish species, and the months in which the GSI value(s) is/are high represents the breeding periodicity of that particular fish species.

In the current study, total fecundity of P. sophore varied from 960 to 5680 (3116 ± 1411). According to Hossain et al. (2012), fecundity ranged from 1580 to 16590 (5300 ± 2700), which is higher to the results of the current investigation. Within species, fecundity may change over time, but the difference seems to be rather small (Óskarsson et al., 2002; Thorsen et al., 2006; Yoneda and Wright, 2004). Size may also affect fecundity within species, but this phenomenon may only make matters worse by disproportionately hurting larger individuals (Kamler, 2005). The linear relationship between fecundity with TL, BW, and OW indicated a close and positive correlation between them which can explain the increase in fecundity with the increase in TL, BW and OW. When size distribution is known, the fecundity-
size connection has mostly been used to predict the fertility of fish stocks quickly (Dulcic et al., 1998). Wooton (1979) examined the energy costs of egg production and environmental factors that affect fecundity. Various authors reported similar linear relationships between these parameters while conducting a study on different fish species, viz. Perry and Vanderkooy (2015), Phukon and Biswas (2012), Bithy et al. (2012), Singh (2009), Somdutt and Kumar (2004). Although these factors were not taken into account for this study due to the small number of female specimens with different ovarianmaturation stages, other factors such as condition, Gonadosomatic index, and OW were counted. The obtained results demonstrated that OW is a superior index to BW or TL for estimating fecundity. As opposed to OW, which is more difficult to quantify in field conditions, BW or TL are easier to use as indices for assessing fecundity. The fish in the study were all the same size, but variable number of eggs were found in their ovaries. The ecologica circumstances of the Brahmaputra River migh be the cause of the variations in fertility of the I sophore. Some past research on other fish also noter these kinds of variances (Rahman et al., 2018).

Conclusion

The current study contributes to the body o knowledge necessary for the creation of effective I sophore management strategies by providing som, critical baseline data on the population biology of thi commercially important species P. sophore as thi fisheries have historically relied on capture. Startin: its captive culture is now necessary. However, i will be important to keep an eye on these biologica indicators' patterns and look into the variables tha may be affecting them. The study indicates the bes physiological performances on the seasonal basi that may help to ensure sustainable aquaculture ans conservation of this small indigenous species.

Acknowledgement

This research was funded by Research Managemen Wing (RMW), Bangabandhu Sheikh Mujibu Rahman Agricultural University through Innovatio Research grant (BSMRAU/RMW/Innovatio
project/128/2019/902/10) of Bangladesh, which is gratefully acknowledged.

Author contribution

Conceptualization, Methodology, Formal analysis: Sabuj K. Mazumder. Investigation and writing original draft: Sutapa Debi. Writing - review \& editing: Mohammad A. Salam, Mohammad L. Rahman, Md. S. Hossain, Sabuj K. Mazumder and Mohammad A. Salam Funding acquisition: Sabuj K. Mazumder and Mohammad A. Salam.

Declaration of competing interest

The authors affirm that they have no known financial or interpersonal conflict that would have appeared to have an impact on the research presented in this study.

References

Abobi, S.M. 2015. Weight-length models and relative condition factors of nine (9) freshwater fish species from the Yapei stretch of the White Volta, Ghana.

Adebiyi, F.A. 2013. The sex ratio, gonadosomatic index, stages of gonadal development and fecundity of Sompat grunt, Pomadasys jubelini (Cuvier, 1830). Pakistan J. Zool. 45(1).

Barman, S.K., B.R. Das, M. Kunda, S.K. Mazumder, M.J. Uddin and P.P. Barman. 2023. Lengthweight relationships and condition factors of mono-and mixed-sex Nile tilapia (Oreochromis niloticus) in open water cage culture system. J. Fish. 11(1): 111204111204.

Bithy, K., M.I. Miah, M.S. Haque, K.R. Hasan and Islam, M.F.2012. Estimation of the fecundity of Jat Puti, Puntius sophore (Hamilton). J. Environ. Sci. Natural Res. 5(2): 295-300.

Daliri, M., S.Y. Paighambari, M.J. Shabani, M. Pouladi and Davoodi, R. 2012. Lengthweight and length-girth relationships, relative weight and relative condition factor of four commercial fish species of northern Persian Gulf. Annual Res. \& Rev. Biol. 1526.

Das, P.R., M.S. Uddin, M.S. Islam, M Biswas and Mia, M.R. 2018. Length Weight Relationship and Sex Ratio o Amblypharyngodon mola in Dekar Haor o Sunamganj, Bangladesh. J. Asiat. Societ Bangladesh, Sci. 44(2): 185-193.

De Graaf, G. 2003. The flood pulse and growtl of floodplain fish in Bangladesh. Fish Manage. Ecol. 10(4): 241-247.

Dulcic, J., N. Skakelja, M. Kraljevic and Cetinic P. 1998. On the fecundity of the Black $\mathrm{Se}_{\text {: }}$ bream, Spondyliosoma cantharus (L.), fron the Adriatic Sea (Croatian coast). Scien Mar., 62(3): 289-294.

Froese, R., A.C. Tsikliras and Stergiou, K.I. 2011 Editorial note on weight-length relations o fishes. Acta Ichthyol. Piscator. 41(4): 261 263.

Fulton, T.W. 1904. The rate of growth o fishes. Twenty-second ann. report. 141-241

Gogoi, R. and U.C. Goswami. 2014. Length-weigh relationship and sex ratio of fresh water fisl Amblypharyngodon mola (HAMBUCH from Assam. Int. J. Fish. Aquat. Stud. 1(4) 68-71.

Gupta, S. and S. Banerjee. 2013. Studies or reproductive biology of Mystus tengar, (Ham.-Buch., 1822), a freshwater catfish o West Bengal, India. Int. J. Aquat. Biol. 1(4) 175-184.

Guy, C.S. and M.L. Brown. 2007. Analysis anı interpretation of freshwater fisheries data American Fisheries Society.

Hasan, T., M.F. Hossain, M. Mamun, M.J. Alam M.A. Salam and Rafiquzzaman, S.M. 2018 Reproductive biology of Puntius sophore is Bangladesh. Fishes 3(2): 22.

Phukon, H.K. and S.P. Biswas. 2012. Observation o1 the maturity index and fecundity of Puntiu. sophore (Ham-Buch) from upper Assam Asian J. Exp. Biol. Sci. 3(1): 247-250.

Hossain, M.A.R. and M.A. Wahab. 2012 Bangladesher Nadir Machhe Jibaboichitra. Matshya Saptaha Songkolar (Proceeding published in Fisheries Week 2012).

Hossain, M.Y., Z.F. Ahmed, P.M. Leunda, A.K.M. Roksanul Islam, S. Jasmine, J. Oscoz, R. Miranda. and J. Ohtomi. 2006. Lengthweight and length-length relationships of some small indigenous fish species from the Mathabhanga River, southwestern Bangladesh. J. Appl. Ichthyol., 22(4), pp. 301-303.

Hossain, M.Y., M.M. Rahman, E.M. Abdallah. and J. Ohtomi. 2013. Biometric relationships of the pool barb Puntius sophore (Hamilton 1822)(Cyprinidae) from three major rivers of Bangladesh. Sains Malays. 22: 15711580.

Hossain, M.Y., M.M. Rahman, R. Miranda, P.M. Leunda, J. Oscoz, M.A.S. Jewel, A. Naif and J. Ohtomi. 2012. Size at first sexual maturity, fecundity, length-weight and length-length relationships of Puntius sophore (Cyprinidae) in Bangladeshi waters. J. Appl. Ichthyol, 28(5): 818-822.

Kamler, E. 2005. Parent-egg-progeny relationships in teleost fishes: an energetics perspective. Rev. Fish Biol. Fish., 15: 399-421.

Kokokiris, L., A. Stamoulis, N. Monokrousos and S. Doulgeraki. 2014. Oocytes development, maturity classification, maturity size and spawning season of the red mullet (Mullus barbatus barbatus Linnaeus, 1758). J. Appl. Ichthyol. 30(1): 20-27.

Mazumder, S.K., M. Kunda, M.M. Iqbal, L.R. Basak and S.K. Das. 2021. Seasonal Dynamics of Stomach Contents, Trophic Level, LengthWeight Relationship and Condition Factor of Mystus bleekeri (Day, 1877). Sains Malays. 50(4): 907-918.

Mazumder, S.K., M.A. Salam, M.A.R. Khan, S.M.I. Khalil and M.T. Hasan. 2022. Biological and Reproductive Indices of Mystus bleekeri (Day, 1877) in Open Water Body (Dekhar Haor) of Bangladesh. Aquat. Sci. Eng. 37(1): 12-18.

Mazumder, S.K., S.K. Das, Y. Bakar and M.A. Ghaffar. 2016. Effects of temperature and diet on length-weight relationship and condition factor of the juvenile Malabar blood snapper (Lutjanus malabaricus Bloch \& Schneider, 1801). J. Zhejiang Univ. Sci.
B. 17(8): 580-590.

Menon, A.G.K. 1999. Check list - fresh water fishe of India. Rec. zool. Surv. India, Misc. Publ. occas. Pap. No.175, 366 p.

Migaud, H., G. Bell, E. Cabrita, B. McAndrew A. Davie, J. Bobe, M.P. Herraez anı M. Carrillo. 2013. Gamete quality anı broodstock management in temperati fish. Rev. Aquaculture, 5: S194-S223.

Minkin, S., Halder, S., Rahman, M., Schuy, D and Rahman, M. 1993. Flood control anı nutritional consequences of biodiversit. of fisheries. Flood Action Plan (FAP), 16 1-17.

Mon, E.E., T. Swe, P.P. Zin and K.L. Dwe. 2020 Length-weight relationship, conditior factor and sex ratio of tade mullet (Liza tad, Forsskal, 1775) from Mawlamyine, Mor state, Myanmar. J. Aquac. Mar. Biol., 9(4) 107-112.

Okey, T.A. 2018. Indicators of marine ecosysten integrity for Canada's Pacific: An expert based hierarchical approach. Sci. Tot. Env. 645: 1114-1125.

Oliveira, M.R., E.F.S. Costa, A.S. Araújo, E.K.R Pessoa, M.M. Carvalho, L.F.M. Cavalcant and S. Chellappa. 2012. Sex ratio ans length-weight relationship for five marinı fish species from Brazil. J. Mar. Bioi Oceanogr., 1: 2.

Óskarsson, G.J., O.S. Kjesbu and A. Slotte. 2002 Predictions of realised fecundity ans spawning time in Norwegian spring spawning herring (Clupea harengus). j Sea Res., 48(1): 59-79.

Parker, G.A. 1992. The evolution of sexual sizi dimorphism in fish. J. Fish Biol., 41: 1-20.

Perry, H. M., and VanderKooy, S. (Eds.). 2015. Thı blue crab fishery of the Gulf of Mexico United States: a regional management plan Gulf States Marine Fisheries Commission.

Rahman, M.M., M.Y. Hossain, M.A. Sayer Jewel, M.M. Billah and J. Ohtomi. 2018 Population biology of the pool barb Puntiu. sophore (Hamilton 1822) (Cyprinidae) is the Padma River, Bangladesh. Zool. Ecol.

28(2): 100-108.
Rahman, M., Y. Hossain, A.S. Jewel, M.M. Rahman, S. Jasmine, E.M. Abdallah and J. Ohtomi. 2012. Population structure, lengthweight and length-length relationships, and condition-and form-factors of the Pool barb Puntius sophore (Hamilton, 1822) (Cyprinidae) from the Chalan Beel, NorthCentral Bangladesh. Sains Malaysi., 41(7): 795-802.

Reddy, S.Y. and M.B. Rao. 1992. Length weight relationship and relative condition factor of Puntius Sophore (Hamilton- Buchanan) from the lake Hussain Sagar, Hyderabad, india. J. Inl. Fish. Soc. India, 24(1): 22-25.

Samad, M.A., M. Farjana, S.K. Chatterjee, M.M. Rahman and S.C. Barman. 2017. Culture technique of endangered Notopterus chitala (Hamilton, 1822) with Oreochromis niloticus for domestication in pond habitat. Bangladesh J. Scient. Indust. Res. 52(3): 187-194.

Sarkar, L. and S. Banerjee. 2010. Breeding ground profile of food fish species in Damodar River system. Int. Biol., 2(1): 51.

Sarkar, U.K., K. Roy, M. Naskar, P.K. Srivastava, A.K. Bose, V.K. Verma, S. Gupta, S.K. Nandy, S.D. Sarkar, G. Karnatak and D. Sudheesan. 2019. Minnows may be more reproductively resilient to climatic variability than anticipated: Synthesis from a reproductive vulnerability assessment of Gangetic pool barbs (Puntius sophore). Ecologi. Indica. 105: 727-736.

Simon, C. J., and R. Tamura. 2009. Do higher rents discourage fertility? Evidence from US cities, 1940-2000. Region. Sci. Urban Econ. 39(1): 33-42.

Singh, R. 2009. Studies on the gonadal cycle and manipulation of maturation in Golden Mahseer, Tor putitora (Ham.) (Doctoral dissertation, Ph. D Thesis, University of Jammu, Jammu).

Sokal, R.R. and F.J. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research.

Solomon, F.N. and I.W. Ramnarine. 2007. Reproductive biology of white mullet, Mugil curema (Valenciennes) in the Southern Caribbean. Fish. Res. 88(1-3): 133-138.

Somdutt, S. and S. Kumar. 2004. Studies on fecundity of Puntius sarana (Ham.) in relation to total length, total weight and ovary weight. J. Indian Fish. Assoc. 31: 81-85.

Sultana, T., S.K. Mazumder, J. Kubra, N. Nishad, S.M.I. Khalil, S.K. Das, M.A.R. Khan and M.T. Hasan. 2023. A multidisciplinary method to assess the reproductive biology of Mystus bleekeri. Aquacult. Fish. 8(3): 280-287.

Talwar, P.K. and A.G. Jhingran. 1991. Inland fishes of India and adjacent countries (Vol. 2). CRC press.

Thorsen, A., C.T. Marshall and O.S. Kjesbu. 2006. Comparison of various potential fecundity models for north-east Arctic cod Gadus morhua, L. using oocyte diameter as a standardizing factor. J. Fish Biol. 69(6): 1709-1730.

Wooton, R.J. 1979. Energy cost of egg production and environmental determinants of fecundity in teleost fishes. Symposia of the Zoological Society of London (Vol. 44, pp. 133-155).

Yesilyurt, C.T.I.N. 2019. Reproductive biology of Charybdis (Goniohellenus) longicollis Leene, 1938 (Brachyura: Portunidae), in the north-eastern Mediterranean Sea, Turkey. Indian J Fish. 66(2): 16-20.

Yoneda, M. and P.J. Wright. 2004. Temporal and spatial variation in reproductive investment of Atlantic cod Gadus morhua in the northern North Sea and Scottish west coast. Mar. Ecol. Prog. Ser. 276:237-248.

Young, K.A. 2005. Life-history variation and allometry for sexual size dimorphism in Pacific salmon and trout. Proc. Royal Soc. B: Biol. Sci. 272(1559): 167-172.

[^0]: *Corresponding Author: Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh. Email: sabujgfb@bsmrau.edu.bd
 https://doi.org/10.3329/aba.v27i2.72527
 ISSN 1025-482X (Print)/2521-5477 (Online) © 2023 ABA. Published by BSMRAU. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/bync-nd/4.0/)

